Tag Archives: In the News

5 Things to Know About Eastern Equine Encephalitis

Every year is different when it comes to mosquito-borne diseases.  During the summer and fall of 2019, the eastern US has seen a bump in cases of a potentially lethal disease—Eastern Equine Encephalitis (EEE)—which has led to health concerns. Here are five key things to know about Eastern Equine Encephalitis:


1. Eastern Equine Encephalitis is a mosquito-borne disease. But one species in particular, Culiseta melanura, plays a critical role.  Culiseta melanura is widely distributed across the eastern US, but is specifically associated with freshwater swamps with standing trees.  The larvae of this mosquito tend to develop in small, protected, naturally occurring cavities (“crypts”) amongst the roots of trees such as maple, hemlock, and cedar. 

Interestingly, Culiseta melanura, does not like to bite humans and almost exclusively takes blood meals from birds.  However, as EEE builds up in local bird populations, other mosquito species with more flexible feeding habits can act as a “bridge” and allow the disease to move from birds to mammals with subsequent blood meals.  A dozen or more mosquito species from the genera Aedes, Coquillettidia, Culex, and Ochlerotatus have been implicated in vectoring the disease from birds to humans.

Culiseta melanura—a key player in the Eastern Equine Encephalitis story. Photo Credit: CDC Public Health Image Library.
Culiseta melanura—a key player in the Eastern Equine Encephalitis story. Photo Credit: CDC Public Health Image Library.

2. Eastern Equine Encephalitis can pose significant risks to human health, but most human infections result in minor or no symptoms.  Eastern Equine Encephalitis is a disease caused by a virus (the Eastern Equine Encephalitis Virus).  According to the CDC, only a small percentage (4-5%) of human infections with this virus actually lead to Eastern Equine Encephalitis.  Thus, the vast majority of human infections lead to minor or no symptoms. 

However, in severe cases of EEE, inflammation of the brain can lead to symptoms including fever, headache, vomiting, confusion, convulsions, and coma.  Roughly a third of such human cases are fatal and survivors often suffer from permanent neurological complications.  Individuals younger than 15 or older than 50 are at greatest risk, as well as individuals that live, work, or recreate near swampy areas. In the US, cases of EEE tend to occur in states along the Atlantic coast and the Gulf coast.  The New England states of Connecticut, Massachusetts, and Rhode Island have seen nearly 20 human EEE cases this year.  Cases can also occur in the Midwest, with a cluster of nearly a dozen reports in southwestern Michigan and northern Indiana in 2019.

3. Humans aren’t the only species impacted by Eastern Equine Encephalitis.  In fact, EEE is primarily a bird disease.  For example, many passerine birds (a group that includes our common songbirds such as robins and starlings) can readily become infected with the EEE virus. Some states even use “sentinel” birds to monitor EEE activity.  If the conditions are right in a given year, populations of the ornithophilic mosquito Culiseta melanura can cause EEE to build up in a local bird population.  Eventually, other mosquito species allow the disease to jump from birds to humans. 

Horses can also become infected with the EEE virus and because equine infections typically precede human cases by a few weeks, an uptick in horse cases can serve as a general indicator of potential risk to humans in an area.  There is a vaccine available for horses to help protect them from EEE.

Cedar swamp in New Jersey. Photo Credit: Famartin, via Wikipedia. CC 3.0.
Cedar swamp in New Jersey. Photo Credit: Famartin, via Wikipedia. CC 3.0.

4. Eastern Equine Encephalitis is very rare in humans.  Case numbers vary around the eastern US every year, but over the last decade the country has averaged only seven human EEE cases per year.  In Wisconsin, there have only been three documented human cases of EEE over the last 50+ years.  The limited habitat of the key mosquito species and its restricted feeding behaviours help explain the rarity of human cases. 

Despite news reports within the last month, the EEE threat should nearly be done for the year in the Upper Midwest.  Eastern Equine Encephalitis cases typically peak in late summer or early autumn, and with temperatures dipping in the region (and snow in the forecast), mosquito activity is on the decline in our area.

5. General mosquito precautions are one of the simplest ways to protect against Eastern Equine Encephalitis.  Because the key mosquito species involved with EEE (Culiseta melanura) is associated with freshwater swamps, chemical insecticide treatments to such areas are often not an option for individual land owners and can pose environmental concerns.  Instead, practices such as wearing long-sleeved clothing, using EPA-registered repellents (such as DEET and picaridin), avoiding areas and periods of high mosquito activity, and removing standing water on a property are some of the best precautions to take.

Masked Hunter Bugs: Another Kissing Bug Look-Alike

“I think I’ve found a kissing bug and wanted to report it” is a surprisingly common line I get at the UW Insect Diagnostic Lab.

I’ve previously written about kissing bugs, but to quickly recap: these are blood-feeding assassin bugs found primarily in South and Central America.  Kissing bugs tend to be associated with vertebrate nests outdoors but can bite humans and can also carry Trypanosoma cruzia parasite that causes Chagas disease.  Due to this concern, I see a spike in website traffic and “reports” of suspected kissing bugs just about any time there’s national news coverage of these insects. While many kissing bug species exist, the vast majority are restricted to tropical and subtropical areas.  The northernmost species—the eastern conenose kissing bug (Triatoma sanguisuga)—ranges from Latin America as far north as southern Illinois.

Eastern conenose kissing bug adult.
Eastern conenose kissing bug adult. Photo credit: Robert Webster, via Wikipedia

Insects don’t care for geopolitical boundaries, but when humans shade in the entire state of Illinois on a distribution map of kissing bugs, it gives the false impression that these insects are on the tollway marching towards Wisconsin’s southern border.  However, the eastern conenose kissing bug is rarely spotted in the northern parts of its range and there has never been a verified case of kissing bugs from within Wisconsin.

The regular occurrence of false reports can likely be attributed to hype in the news combined with a good ol’ case of mistaken identity.  It turns out that there are a number of common insects that can resemble kissing bugs.  One of these, the western conifer seed bug (Leptoglossus occidentalis), is regularly encountered in the upper Midwest because these insects sneak indoors in the fall just like boxelder bugs.  Recently, the commonest look-alike I’ve been getting reports of is the masked hunter bug (Reduvius personatus), which can also be encountered indoors.

If you aren’t familiar with masked hunter bugs, there’s a good reason why these insects can sometimes mistaken for kissing bugs—they’re technically kissing cousins.  Both kissing bugs and masked hunter bugs belong to the assassin bug family (Family Reduviidae).  This is a diverse family of approximately 7,000 species worldwide and we have dozens of common species in the Midwest.  The vast majority of these species (including masked hunter bugs) are really beneficial predators of other arthropods and are of little medical importance.  In theory, if you picked up and mishandled one of our Midwestern assassin bugs species, it could bite—likely feeling similar to a wasp sting—although that’s about the worst it could do.

Juvenile masked hunter bug camouflaged with debris.
Juvenile masked hunter bug camouflaged with debris. Photo Credit: Chiswick Chap, via Wikipedia

Masked hunter bugs are readily identifiable, although the nymphs (juveniles) can have you scratching your head if you haven’t encountered them before.  The nymphs are often ¼” – ½” long and camouflage themselves with bits of lint and other debris—as a result, they can resemble miniature walking dust bunnies.  Once you recognize this disguise, they’re easy to identify.

Masked Hunter Bug Adult.
Masked Hunter Bug Adult. Photo credit: JP Hamon, via wikipedia

Adult masked hunter bugs are slender, roughly ¾” long, and entirely dark coloured.  They have long, thin legs & antennae and stout beak-like mouthparts which they use to feed on insects and other arthropod prey.  Several key features help distinguish masked hunter bugs from eastern conenose kissing bugs:

  1. Masked hunter bugs are entirely dark while eastern conenose kissing bugs have red on their body
  2. Masked hunter bugs lack the projecting “conenose” present on the head of kissing bugs
  3. Masked hunter bugs have a bulging, “muscular” appearance of their prothorax (trapezoidal region behind the head) when viewed under magnification
  4. Masked hunter bugs have stout beak-like mouthparts while kissing bugs have long, slender mouthparts when viewed under magnification

Side-by-side comparison of a kissing bug and a masked hunter bug.
Side-by-side comparison of a kissing bug and a masked hunter bug. Photo Credit: Devon Pierret and PJ Liesch, UW Insect Diagnostic Lab. [Click for full sized version]
When it comes to kissing bugs, we simply don’t have these insects in the Upper Midwest, but we do have look-alikes.  For side-by-side diagrams showing an eastern conenose kissing bug compared to common look-alikes, visit the ID Guide page on this website: labs.russell.wisc.edu/insectlab/visual-id-guides/

A Celebration of Insects

It’s a funny world we live in.  We hear regular reports of insect declines in the news and still get bombarded with constant ads for services pitching a mosquito free yard all summer and a grub free lawn.  But what about simply appreciating insects and the critical roles they play in our everyday lives?  

That’s a goal of the first ever Wisconsin Insect Fest being held at the Kemp Natural Resources Station  in Woodruff, Wisconsin later this month.  The two-day event—being held on Friday, July 26th and Saturday, July 27th—is a celebration of insects.

Wisconsin Insect Fest is free, open to the public, and will feature a wide range of activities for insect enthusiasts of all ages.  Topics will range from how to observe and collect insects, to the role of insects in the ecosystem, entomophagy, and even forensic entomology.  The Wisconsin Insect Fest will also feature The Great Wisconsin Bug Hunt—a 24-hour BioBlitz activity to see just how many arthropods can be spotted at the Kemp station in a 24-hour period (including a night time activity in conjunction with National Moth Week).

If you love insects, join in the festivities at the Wisconsin Insect Fest later this month or check out the event website for details: tinyurl.com/WisconsinInsectFest

Black Flies: Out for Blood

Mosquito season has officially kicked off in Wisconsin, meaning the omnipresence of repellents for the foreseeable future.  If mosquitoes have redeeming properties, it’s that they at least serve as food for a wide variety of animals and can even act as pollinators in some cases.  When mosquitoes bite, they do so with surgical precision that would make a phlebotomist green with envy.  Simply reading about mosquitoes might make you want to scratch, although on the spectrum of biting flies, things could be much more sinister…

Also very active at the moment in Wisconsin are black flies (Family Simuliidae) and our state is home to 30 species of these tiny sanguivores.  Black flies—or “buffalo gnats” due to their hump-backed appearance—are deceptive creatures for their small size (~ 1/8″ long).  You usually don’t notice them as much by sound like buzzing mosquitoes, but when they land to feed, these tiny flies are vicious.  Rather than using needle-like mouthparts to delicately probe for blood vessel like mosquitoes, black fly mandibles resemble the jagged edge of Rambo’s survival knife which they use in a “slash-and-slurp” approach.  These mouthparts slice into flesh to create a pool of blood which they then consume.  If this sounds unpleasant—it is!  Reactions to black fly bites can sometimes be severe, with fever and enlargement of nearby lymph nodes.  In addition, their sheer numbers can take a psychological toll and can be a strong test of one’s fortitude if you must be outdoors during peak black fly season.

Adult black fly taking a blood meal. Photo Credit: Credit: D. Sikes, via Flickr.

Of the 30 species in Wisconsin, only a handful actually bite humans.  Other species are “picky eaters” with a strong preference for other animals.  The species, Simulium annulus, specializes on common loons and in “bad” years the constant pestering can force adult loons to abandon their nests.  Other birds, such as purple martins and bluebirds can face high rates of chick mortality when the black flies are bad.  Pets, like dogs can commonly get bites and large pinkish welts on the soft skin of their belly.  Dairy cows can be harassed to the extent that feeding and weight gain is greatly reduced and milk production all but ceases.  In some cases, large animals including deer, cows, and horses have been killed outright by black flies.

With that said, if you’ve ever encountered an outbreak of black flies, you’d likely remember.  If you haven’t bumped into black flies before, you’re perhaps in a good spot on the map.  The larvae of many black fly species tend to be associated with streams and rivers, meaning that geography can play a role with outbreaks.  Within the state, areas near the Wisconsin River and other large rivers and streams tend to see the most intense black fly activity.  Black flies can be even worse to the north.  These insects can be notoriously bad in the Boundary Waters Canoe Area in June, and in Canada black flies have even been enshrined in film and a surprisingly catchy folk song.

Black fly larvae in a river. Photo credit: GlacierNPS via Flickr

If there’s good news about black flies, it’s that the adults are short-lived.  Wisconsin tends to see a blitz of activity spanning a 2-3 weeks in late spring.  When black flies are active, the best approach is to layer up with long sleeves, break out the repellents like DEET, and use a head net if needed.  If you’re in an area with intense black fly activity, cutting back on outdoor activities until these insects run their course for the year may be the simplest option.

What’s Trending? Ticks and Lyme Disease

This month’s post features contributions from Dr. Bieneke Bron


As stories about measles and vaccinations circulate in the news, it’s easy to lose track of other emerging health threats.  May is Lyme Disease Awareness month, and if you want to look at an emerging health threat particularly relevant to the Midwest, look no further than deer ticks and Lyme disease.

Adult female deer tick (Ixodes scapularis). Photo credit: Robert Webster / xpda.com / CC-BY-SA-4.0 via Wikipedia.

A Brief History of Deer Ticks and Lyme Disease:
The Lyme disease story is surprisingly new to Wisconsin and deer ticks are something that our grandparents didn’t have to deal with while growing up.  It wasn’t until the late 1960’s that our first deer ticks were documented in northern Wisconsin. At the time, this particular tick was known from more southern locations, so the first Wisconsin reports were noted as a curiosity in the scientific literature.  In actuality, this marked an early foothold of deer ticks in the region, which have spread rapidly.  Fast forward 50 years and deer ticks are widely distributed around Wisconsin and surrounding states.

Deer ticks are only one component of the Lyme disease equation. The spirochete bacterium Borrelia burgdorferi (or the closely-related B. mayonii) must be transmitted by these ticks to cause Lyme disease in humans.  Similar to the deer tick situation, Lyme disease has had an interesting recent history.  Research from the Yale School of Public Health suggests an ancient origin of Borrelia burgdorferi, but the first clinical cases of Lyme disease weren’t formally documented in the medical literature until the 1970’s.  At that time, an unusual cluster of juvenile arthritis cases with an accompanying rash helped researchers characterize the disease near Lyme, Connecticut*.  It wasn’t until the early 1980’s that the roles of deer ticks and Borrelia burgdorferi were recognized.

Skip ahead a few decades and the numbers for Lyme disease have increased steadily.  Today Lyme disease is the most commonly reported arthropod-borne disease in the US with over 40,000 confirmed and probable cases in 2017 alone.  Looking at Wisconsin’s statewide averages, approximately 20% of deer tick nymphs (juveniles) and 40% of adult deer ticks are carrying Lyme disease, which are alarmingly high percentages.

Deer tick nymphs (juveniles) next to chia seeds, sesame seeds, flax seeds and a penny for size reference. Photo Credit: Dr. Bieneke Bron, MCE-VBD.

Tracking Ticks with Mobile Technology:
With the changing tick and tick-borne disease situation over the last 50 years, understanding the factors that influence where and when ticks are encountered is more important than ever before.  Researchers at the Midwest Center of Excellence for Vector-Borne Disease and the Northeast Regional Center for Excellence in Vector-Borne Diseases have teamed up to develop The Tick App—a mobile app to help gather critical clues to better understand human exposure to ticks.  The app, available in iTunes and GooglePlay, not only allows the public to contribute valuable data to tick researchers, but the app provides helpful tips on tick identification, activity, and precautions to take.  During the tick season, the researchers will also identify ticks from the images submitted in the app.

As we move into peak tick season, Midwesterners should be aware of ticks and take appropriate precautions to protect themselves [Recommended reading: the ABCs of Tick Season].  Learn more about The Tick App by visiting thetickapp.org or follow on Twitter @TickAppOnTour.


*Interestingly, a 57-year old physician from Medford, Wisconsin, was diagnosed with the hallmark rash of Lyme disease (erythema migrans) in 1969 [Scrimenti 1970, Arch Derm].  Just imagine, Lyme disease being known as Medford disease…

Spring’s Coming…and so are the Insects

With daylight saving time beginning over the weekend and warmer temperatures knocking at our door, spring is finally crawling our way.  Last winter is one we won’t soon forget—the season started out mild before temperatures plummeted with January’s polar vortex.  During the coldest stretch, our coping strategy might have involved layers of blankets and reruns on Netflix, but what about the bugs? Questions regarding the winter impacts on insects have been some of the commonest at the UW Insect Diagnostic Lab this year.  There will undoubtedly be some impacts of this year’s polar vortex, although many insect species are well-equipped to deal with the cold.  Before we know it, overwintering insects will become active again in the Midwest and many species will simply shrug off the polar vortex as if it hadn’t happened.  For insects that didn’t fare as well in the cold, high reproductive capacities will likely allow their numbers to bounce back relatively quickly.

Thus, 2019 isn’t going to be insect-free by any means and intuitively this makes sense.  We know that every year insects make it through the winter months and become active as temperatures creep up in spring.  Looking at an evolutionary time scale, this year’s cold snap wasn’t the first time that the species in our area have encountered frigid temperatures before, and many creatures are adapted to survive surprisingly cold conditions.   We might have chosen to block it out of memory, but the Midwest experienced a very similar situation a mere five years ago.  Weather patterns in January of 2014 saw temperatures dip to -20˚F and colder in some spots of the Midwest.  The following summer, we still had plenty of insect activity in the region.

Thermometer from a cold and crisp Wisconsin morning. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

Since we don’t see insects bundling up with tiny mittens and scarves, how do they make it through the winter?  It turns out that insects and other arthropods have a number of strategies to help them survive.  For starters, insects typically have a particular life stage (e.g., egg or pupa) that is more tolerant of adverse environmental conditions, such as freezing or desiccation.  Passing through the winter as a more resilient life stage is a good starting point.

Some of the other strategies are surprisingly similar to humans.  Just like snowbirds heading to warmer states for the winter, certain insects like monarch butterflies and green darner dragonflies migrate southward to avoid the coldest temperatures.  Our official state insect (the honey bee) doesn’t migrate, and instead chooses to remain active.  Honey bee colonies shiver together as an insect version of central heating to keep the inside of their hive a constant temperature.  Other insects simply seek shelter and overwinter in protected locations to avoid the worst of the cold.  Insects like the multicolored Asian lady beetle, boxelder bugs, and the invasive brown marmorated stink bug are fond of sneaking into man-made structures to spend the winter.  If insulation and central heating make homes warm enough for us, it’s plenty warm to prevent insects from freezing.  In more natural settings, such insects might end up sheltering in rock piles or beneath the loose bark of a dead tree.  Those locations might not be as toasty as a house, but they can still provide adequate respite from the cold—meaning that insects using this strategy should have been well protected from this year’s cold spell.  Similarly, many insects and other arthropods spend the winter below ground or on the surface of the ground amongst a layer of insulating leaf litter.  In addition, many parts of Wisconsin had a solid covering of snow by the time the polar vortex arrived, so creatures such as ticks had a thick layer of insulation from the coldest of the cold.

Another strategy utilized by insects is the production of natural antifreeze compounds (specific alcohols or proteins) which serve as cryoprotectants to help prevent freezing within their bodies.  We know that a cup of water will turn to ice at 32˚F, but dissolve salts or other substances in that same water and it will require colder temperatures to freeze it.  Insects producing high concentrations of these cryoprotectants can remains unfrozen at surprisingly low temperatures, similar to a bottle of high-proof spirits kept in a freezer.  Taking it even further, the common black and brown woolly bear caterpillars seem to embrace the cold and actually allow ice to gradually form within their bodies.  This may sound like a fatal mistake, but by regulating the formation of ice crystals on their own terms, woolly bear caterpillars are able to control where ice formation occurs and limit it to specific areas of their bodies to prevent damage.  If the same caterpillars were unprepared and froze rapidly, their cells might burst like a can of soda put into a freezer.

The ubiquitous woolly bear caterpillar (Pyrrharctia isabella) is well adapted to winter conditions. Photo credit: Dave Govoni via Flickr.

And then the ash borer
The insect I’ve gotten the most questions about lately has been the emerald ash borer.  While not native to our area, this invasive pest comes from similar latitudes of eastern Asia and the cold-hardy larvae are fortified with cryoprotectants as they spend the winter beneath the bark of ash trees.  These natural antifreeze compounds have their limitations though, and just like sidewalk salt failing to melt ice on a really cold day, the cryoprotectants only work down to certain temperatures before freezing (and death) occurs.  For emerald ash borer, the point at which freezing spontaneously begins to occur (the supercooling point) is when temperatures dip into the range of -13˚F to -23˚F.  This year’s polar vortex did see temperatures fall into and below that range, which would have killed plenty of emerald ash borer larvae, although the insulating effects of the tree bark likely provided some buffering.

The pale end of a surviving emerald ash borer larva sticking out from its tunnel. When larvae are killed by freezing, they typically become discolored. This sample came from the Milwaukee area in early March, 2019. Photo credit: PJ Liesch, UW Insect Diagnostic Lab

Emerald ash borer populations will almost certainly take a hit from this year’s polar vortex, but it’s not going to be a knockout blow.  Give it some time and the reproductive capacity of this invasive species will allow populations to rebound.  The news reports of cold-induced EAB mortality in early February might have been encouraging, but scientific models from the US Forest Service suggest that to really knock down EAB in the long run, we’d have to experience arctic blasts on a regular basis—news that many Midwesterners aren’t likely to receive warmly.


Further Reading: For a great read on how wildlife survive the winter, check out Bernd Heinrich’s Winter World

2018’s Top Trends from the Diagnostic Lab (Part 2)

In this post, we’re continuing to count down the University of Wisconsin Insect Diagnostic Lab’s top arthropod trends of 2018. This is the second half of a two part series; the first half can be found here.


5) White-Lined and Other Sphinx Moths:
The white-lined sphinx moth (Hyles lineata) can be a common species, so encountering one of the 3 inch long hornworm caterpillars isn’t unusual. However, these caterpillars can also be encountered in massive road-traversing hordes if the conditions are just right. From midsummer onwards, large numbers of these caterpillars were observed around the state—in some cases by the tens of thousands. If you didn’t spot any of the caterpillars themselves, you might have encountered the large adult moths with their hummingbird-like behaviour in late summer. Several other sphinx moths species also had a strong presence in 2018, such as the clearwing hummingbird moths and the tobacco and tomato hornworm caterpillars which can regularly be encountered in gardens as they munch away on tomato and pepper plants.

Large, dark-colored hornworm caterpillar of the white-lined sphinx moth on a plant
Large, dark-colored hornworm caterpillar of the white-lined sphinx moth. Photo submitted by Ted Bay, UW-Extension

4) Sawflies:
Sawflies, the caterpillar copycats of the insect world, are a diverse group, so they’re always present to some extent. Last year saw an unexpected abundance of two particular types in Wisconsin—the dogwood sawfly and the non-native Monostegia abdominalis, which feeds on creeping Jenny and related plants from the loosestrife group (Lysimachia species). While sawflies are plant feeders, dogwood sawflies can also damage the soft wood of a home’s siding or trim when these insects excavate small chambers to pupate in. The UW Insect Diagnostic Lab saw a distinct bump in reports of wood damage from the dogwood sawfly last year.

Whitish larva of the dogwood sawfly curled up on a dogwood leaf
Larva of a dogwood sawfly showing the whitish, waxy coating. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

3) Armyworms:
True armyworms (Mythimna unipuncta) can be a dynamic and sporadic pest in the Midwest. This species doesn’t survive the cold winters of our area, so adult armyworm moths must invade from the south each spring. Depending on national weather patterns, the arrival of the adult moths can vary significantly from year to year. If an early mass arrival is followed by abundant food and ideal conditions for the ensuing caterpillars, large populations can result. Once they’ve arrived, true armyworms can go through 2-3 generations in the state and this second generation of caterpillars made an alarming appearance in mid-to-late July. Under the conditions last summer, massive hordes of these caterpillars decimated crop fields before marching across roads by the tens or hundreds of thousands to look for their next meal. In some cases, that next meal included turfgrass, meaning that some Wisconsinites came home from work to biblical hordes of caterpillars and half-eaten lawns in late July.

Striped caterpillar of the true armyworm
Caterpillar of the True Armyworm (Mythimna unipuncta). Photo Credit: Lyssa Seefeldt, University of Wisconsin-Madison Extension

2) Monarch Butterflies:
Much to the delight of fans and conservationists, the iconic monarch butterfly (Danaus plexippus) appeared to have a banner year in the Midwest in 2018. Reports and observations of high numbers of monarchs poured into the Insect Diagnostic Lab during the summer months. As comforting as these reports were, the butterflies still faced a perilous 2,000 mile journey to reach their overwintering grounds in Mexico.  The most consistent measurement of the eastern monarch population comes from estimating the area occupied by the densely-packed overwintering butterflies.  In late January the latest count was released with encouraging news—the eastern monarch population is up 144% over last year and is estimated to be the largest in over a decade.  In contrast, the western monarch population overwinters in southern California and has recently dipped to alarmingly low numbers. Regardless of the winter assessments, monarchs face tough challenges and Wisconsinites are encouraged to help conserve this iconic species.  The Wisconsin Monarch Collaborative recently launched a website with resources for those wishing to join the effort.

Seven monarch butterflies nectaring on a flower
Multiple monarch butterflies nectaring on a single plant in August. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

1) Floodwater Mosquitoes:
Mosquitoes snagged the top spot on 2018’s list for good reason. The upper Great Lakes region is home to over 60 different mosquito species, but one subset—the “floodwater” mosquitoes—drove the storyline last year and impacted outdoor activities through much of the spring and summer months. Mosquitoes in this group, such as the inland floodwater mosquito (Aedes vexans), flourish when heavy rains come. Last year’s mosquito season kicked off in force with a batch of pesky and persistent floodwater mosquitoes just before Memorial Day weekend. Mosquito monitoring traps in southern Wisconsin captured record numbers of mosquitoes shortly thereafter. Later in the year, the Midwest experienced an unprecedented series of severe rainstorms, setting the stage for an encore performance of these mosquitoes. It was this second explosion of mosquitoes that caught the attention of anyone trying to enjoy the outdoors in late summer—a time of the year when mosquitoes are typically winding down in the state.

Ephemeral pools of water created ideal conditions for floodwater mosquitoes in late summer. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

2018’s Top Trends from the Diagnostic Lab (Part 1)

Each year the University of Wisconsin’s Insect Diagnostic Lab receives thousands of arthropod samples and reports from around the state and region, providing a unique perspective into insect and arthropod trends in Wisconsin and beyond.  This post is the first half of a series counting down the top arthropod trends in our area last year.  The second part will be posted in early February and can be found here.


10) Dagger and Tussock Moths:
A few species of fuzzy caterpillars were surprisingly abundant last year and there’s a good chance you might have bumped into these in your own neighborhood.  Two similar-looking yellowish species, the American dagger moth and the white-marked tussock moth, were extremely common around Wisconsin and were two of the most widely reported caterpillars last summer. Another tussock moth associated with milkweed was also surprisingly common in 2018. With many Wisconsinites growing milkweed to attract monarch butterflies, the black and orange caterpillars of the milkweed tussock moth were also noted in abundance around the state last year.

Fuzzy black and orange Caterpillar of the milkweed tussock moth (Euchaetes egle)
Caterpillar of the milkweed tussock moth (Euchaetes egle). Photo Credit: Katja Schulz via Wikipedia

9) Fungus Gnats:
Pick any spot on a Wisconsin map and 2018 was most likely a soggy year. Understandably, rain encourages insects and other creatures that thrive under damp conditions. Last year’s rains created great conditions for fungus gnats, which became quite abundant by late summer. While fungus gnats are harmless to people and pets, they can be an annoyance if present in high numbers. Fungus gnats thrive in damp organic materials, meaning that rich soil, compost piles, and decaying plants can produce masses of these tiny, dark-colored flies. The larvae of these insects can also be common in the soil of houseplants.  As Wisconsinites brought their favorite potted plants indoors in autumn to avoid approaching frosts, reports of indoor fungus gnats were common.

Small dark coloured gnats captured on a yellow sticky card trap
Tiny (2mm long) fungus gnat adults captured on a sticky card trap near indoor plants in fall of 2018. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

8) Purple Carrot Seed Moth:
With several new, non-native insects showing up in Wisconsin every year, the impacts of each species can vary significantly. Some exotics, like the emerald ash borer make massive waves, while others cause merely a ripple. The impacts of one of our newest invasive insects, the purple carrot seed moth (Depressaria depressana), are not yet fully known. This European species was spotted in Wisconsin for the first time last summer and the tiny caterpillars love to feed on the flowers (umbels) of plants from the carrot family. Below-ground plant structures (e.g., the taproots of carrots) aren’t impacted, but notable damage to herbs like dill, fennel, and coriander can occur. As a result, this pest may be a concern for seed producers, commercial herb growers, or home gardeners with a fondness for dill and related herbs. The purple carrot seed moth has been reported in 8 Wisconsin counties thus far [Brown, Columbia, Dodge, Kewaunee, Milwaukee, Racine, Sheboygan and Washington Counties], so new county-level reports are encouraged at the UW Insect Diagnostic Lab.

Tiny (<1/4" long) spotted caterpillar of the purple carrot seed moth on dill.
Caterpillar of the purple carrot seed moth. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

7) Odorous House Ants
Imagine the stereotypical black ants zeroing in on sugary foods at a picnic and you’d have a fitting profile of the odorous house ant (Tapinoma sessile). Of the 100+ ant species in the Midwest, the odorous house ant stood out in spring and early summer last year with its sheer abundance. The UW Insect Diagnostic Lab was flooded with calls about these sugar-loving ants during 2018’s rainy spring, especially when these ants wandered indoors. The spring rains may have forced the ants from waterlogged colonies to seek out higher-and-drier locations, making odorous house ants the most commonly reported ant at the diagnostic lab last spring.

SMall black ant—an odorous house ant worker
Odorous House Ant (Tapinoma sessile) worker. Photo Credit: JJ Harrison via Wikipedia

6) Stink Bugs:
While the Midwest is home to over 50 species of stink bugs, one particular species—the invasive brown marmorated stink bug—stands out to give the rest a particularly bad reputation. If you live in a part of the state with the brown marmorated stink bug, you may have already encountered this species. With its habit of sneaking indoors in the fall, this insect replaced boxelder bugs in some areas as the top home-invading nuisance pest of 2018. This Asian species has made the diagnostic lab’s Top 10 list for several years now and unfortunately doesn’t show any signs of slowing down. In 2018 alone, BMSB was detected in 8 new Wisconsin counties, which hints at potential damage to fruit and other crops in those areas in the coming years.

Adult brown marmorated stink bug
Adult brown marmorated stink bug. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

To see the rest of Wisconsin’s top arthropod trends of 2018, check out part 2, available here in early February.

Update: Brown Marmorated Stink Bug in Wisconsin

Author’s Note: Original post updated in January, 2019 due to a confirmed report in Waupaca Co. and suspected report in Oneida Co.


One of the most concerning invasive insects to appear in Wisconsin in the last decade is the brown marmorated stink bug (Halyomorpha halys).  This Asian species delivers a double-whammy of not only damaging crops and other plants, but also being a significant nuisance when it sneaks into buildings in the fall. Since its initial detection in the state in 2010, populations of this insect have built up slowly but steadily. 

Brown marmorated stink bug adult on the side of a building in fall. This is becoming a common site in some parts of the Midwest. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab.

What’s the current status of BMSB in Wisconsin?

As of late 2018, 28 counties have confirmed reports of the brown marmorated stink bug and a handful of other countries have suspected sightings.  This insect has a strong foothold in the state and was confirmed in eight new counties in 2018 alone—Eau Claire, Jackson, La Crosse, Marquette, Monroe, Richland, Trempealeau, and Waupaca counties. 

Distribution of the brown marmorated stink bug in Wisconsin—updated January 4th, 2019
Distribution of the brown marmorated stink bug in Wisconsin—updated January 4th, 2019. BMSB has been confirmed in 28 counties. Map Credit: PJ Liesch, UW Insect Diagnostic Lab.

Two core areas currently stand out for brown marmorated stink bug activity in Wisconsin: the Highway 41 corridor from Fond du Lac up to Green Bay and southern Wisconsin from Dane and Rock Counties east to the Milwaukee metro area.  These two areas have the longest history of BMSB in the state and account for the majority of reports thus far. 

Much of the state has yet to encounter this insect or truly experience its impacts.  When the brown marmorated stink bug is first detected in an area, there’s a proverbial “calm before the storm”.   The pattern observed in the state thus far has been a few “quiet” years where low initial populations of this insect result in only a few sightings annually.  However, after a few years in a given area, BMSB populations build up to the point where nuisance problems around structures are noted and reports of potential plant damage begin to trickle in.

What’s the Outlook for BMSB?

Unfortunately, Wisconsin has yet to see the full impact of this invasive insect.  Observations over the last few years have found that BMSB is able to survive our winters and reproduce in the state, so this adaptable pest will most likely continue to build its numbers in the coming years. 

Over time, the brown marmorated stink bug is likely to emerge as one of the top structure-invading pests in the state alongside the likes of boxelder bugs and multicolored Asian lady beetles.  In the eastern US, where BMSB has been established for over a decade in spots, problems can be significant.  In some cases these malodorous insects have been documented invading homes by the tens of thousands

Several brown marmorated stink bug juveniles on a dogwood shrub. Ornamental trees/shrubs, vegetables, and fruit crops can all be attacked by this insect. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab.

While widespread crop damage has not yet been observed in Wisconsin, it may only be a matter of time as population of this insect continue to build in the state.  Agricultural problems have also been significant in the eastern US, giving us a glimpse into what could potentially happen in coming years.  For example, brown marmorated stink bug caused $37 million dollars in losses to apples in the mid-Atlantic states in 2010 alone.  

Having been detected in Portage County in 2017, brown marmorated stink bug may soon start to pose a threat to vegetable production in central Wisconsin.  Similarly, specimens confirmed from Door County in 2017 are forcing fruit growers in that part of the state to keep a close watch on their orchards and vineyards.  With the recent detection of BMSB in several western Wisconsin counties, we’ll likely see BMSB populations slowly build in that part of the state over the next few years as well. 

What should you do?

September’s Mosquito “Madness”

While much of our insect activity in the Midwest slows down as summer draws to a close, some areas have seen an unusual increase in mosquito activity recently.  In Wisconsin, we generally expect mosquitoes to be “bad” from late spring through the summer months, but these pesky sanguivores typically fade away as autumn approaches.  September of 2018 has definitely bucked the trend, and mosquito pressure has been very high in many parts of the state and region this month.

As with other mosquito stories, the common denominator is water—in this case, the unprecedented rainfall events in late August and early September.  During this time, a series of storms dropped heavy rains across large swaths of Wisconsin and surrounding states.  Much of Wisconsin received several inches of rain, and some southern counties were bombarded with 10+ inches of rain in short periods of time.  Devastating flooding ensued, and it was only a matter of time before the mosquitoes responded as well.

Flooding caused over $200 million in damages in Wisconsin alone and set the stage for September’s unseasonably high numbers of floodwater mosquitoes. Photo Credit: PJ Liesch, UW Insect Diagnostic Lab

Surprisingly, not all mosquitoes can take advantage of floodwaters and some species have a strong preference for more permanent bodies of water, such as tree-holes, man-made objects, marshes, and other areas that can hold water for weeks or months on end.  Out of the 60+ mosquito species in the Midwest, it’s a much smaller subset that has flourished lately—a group appropriately called the “floodwater mosquitoes” for their ability to use temporary water sources to their advantage.  Members of this group, including the currently-abundant “inland floodwater mosquito” (Aedes vexans), tend to lay eggs in low-lying areas without water.  Laying eggs away from water may seem like a counterintuitive strategy, but the hardy eggs simply bide their time until heavy rains arrive—in some cases, years later.

Relying upon temporary resources can be a risky strategy; if the waters dissipate too quickly,  stranded larvae or pupae can be doomed.  Floodwater mosquitoes have evolved to race against the clock, with eggs that hatch shortly after exposure to water, followed by hasty growth and development.  Under the right conditions, it can take less than a week for these mosquitoes to make it to the adult stage.  This scenario is exactly what played out in our area—the rains came, followed shortly thereafter by hungry adult mosquitoes.

The “inland floodwater mosquito” (Aedes vexans) is currently abundant in the Midwest. Photo Credit: Sean McCann, via Flickr

With the unseasonably high mosquito pressure this September, one of the commonest questions has been, “when will it stop?!”  While the mosquitoes have undeniably been bad lately, we’re past the worst of the situation.  Mosquitoes and other insects are “cold-blooded” creatures, so there’s a general relationship between warmer temperatures and insect activity. Most of our insects in the Midwest become lethargic when temperatures dip into the 50s; below 50˚F mosquitoes are often too lethargic to fly, let alone pursue a blood meal.  We saw unusually high mosquito activity in early- and mid-September when temperatures remained in the 70s and 80s most days.  Looking at the weather for the near future, many parts of Wisconsin are expecting more seasonal temperatures, which will provide relief.  Mosquitoes might still be encountered on warm fall days, but evening temperatures may simply be too chilly for mosquitoes to go about their business and impending frosts will be the final “nail in the coffin” for September’s floodwater mosquitoes.

In the meantime, the best way to deal with the late season mosquitoes may be to embrace “flannel season” and put on some long-sleeved layers as a physical barrier to bites, and use  EPA-approved repellents as needed (such as on warm days).  Avoiding prime mosquito feeding times (dawn/dusk) and good mosquito habitat can help you avoid bites as well.  It may be sad to see summer go, but the changing leaves and cooler temperatures also signal the winding down of mosquito activity for the upper Midwest.