Primer in Population Genetics
Hierarchical Organization of Genetics Diversity

Within-individual variation

Within-population variation

Among-population variation

Individual genes A and B

Chromosomes (one from each parent)

Within-individual variation

Individual

Within-population variation

Among-population variation

Hierarchical Organization of Genetics Diversity
Defining Genetic Diversity within Populations

- Polymorphism – number of loci with > 1 allele
- Number of alleles at a given locus
- Heterozygosity at a given locus
- Theta or $\theta = 4N_e\mu$ (for diploid genes)

where

$N_e = \text{effective population size}$

$\mu = \text{per generation mutation rate}$
Defining Genetic Diversity
Among Populations

• Genetic diversity among populations occurs if there are differences in allele and genotype frequencies between those populations.
• Can be measured using several different metrics, that are all based on allele frequencies in populations.
 – Fst and analogues
 – Genetic distance, e.g., Nei’s D
 – Sequence divergence
Estimating Observed Genotype and Allele Frequencies

• Suppose we genotyped 100 diploid individuals ($n = 200$ gene copies)....

```
<table>
<thead>
<tr>
<th>Genotypes</th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>58</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Genotype Frequency</td>
<td>0.58</td>
<td>0.40</td>
<td>0.02</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th># obs. for genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>Observed Allele Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>156/200 = 0.78 (p)</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>44/200 = 0.22 (q)</td>
</tr>
</tbody>
</table>
```
Estimating Expected Genotype Frequencies
Mendelian Inheritance

• Offspring inherit one chromosome and thus one allele independently and randomly from each parent.

• Mom and dad both have genotype Aa, their offspring have three possible genotypes:

 AA Aa aa
Estimating Expected Genotype Frequencies

• Much of population genetics involves manipulations of equations that have a base in either probability theory or combination theory.

- **Rule 1**: If you account for all possible events, the probabilities sum to 1. [e.g., \(p + q = 1 \) for a two-allele system].

- **Rule 2**: The probability that two independent events occur is the product of their individual probabilities.

 [e.g., probability of a homozygote with aa genotype is \(q^2 \)].

• Thus, under “ideal” conditions, expected genotype frequencies are \(p^2 \) for AA, \(2pq \) for Aa, and \(q^2 \) for aa; and the genotype frequencies sum to 1 such that:

 \[
p^2 + 2pq + q^2 = 1 \quad \text{(Hardy Weinberg Equilibrium)}
 \]
Expected Genotype Frequencies under HWE
Testing for Deviations from HWE

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed numbers (O)</td>
<td>16</td>
<td>20</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Expected frequencies</td>
<td>p^2</td>
<td>$2pq$</td>
<td>p^2</td>
<td>1.0</td>
</tr>
<tr>
<td>0.65^2</td>
<td>$20.650.35$</td>
<td>0.35^2</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>0.42</td>
<td>0.46</td>
<td>0.12</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Expected numbers (E)</td>
<td>17</td>
<td>18</td>
<td>5</td>
<td>40</td>
</tr>
</tbody>
</table>

* (expected frequency * 40)

$p = 52/80 = 0.65$
$q = 28/80 = 0.35$
Testing for Deviation from HWE with a Chi-square test

\[\chi^2 = \sum (O - E)^2 / E \]

\[\chi^2 = (16 - 17)^2 / 17 + (20 - 18)^2 / 18 + (4 - 5)^2 / 5 \]

\[\chi^2 = 0.4 \]

- Probability of obtaining a \(\chi^2 \) of 7.2 or greater (1 df) = 0.53
- Thus, observed genotypes do not deviate from HWE
Estimating Expected Heterozygosity when >2 Alleles

• When there are more than 2 alleles, a simple way to calculate HW expected heterozygosity is:

$$H_e = 1 - \Sigma p_i^2$$

• For example, if allele frequencies for 3 alleles are 0.5, 0.3, and 0.2, HW expected heterozygosity is:

$$H_e = 1 - (0.5^2 + 0.3^2 + 0.2^2) = 1 - (0.25 + 0.09 + 0.04) = 0.62$$
Estimating Genomic Diversity

• To fully assess the demographic history and evolutionary potential of species, genome-wide assessment of genetic diversity is needed (mammals have ~35,000 loci).
• Genetic diversity measures are estimated over several loci that are presumed to be a random sample of the genome
• Heterozygosity is often averaged over multiple loci to obtain an estimate of genome-wide genetic diversity
Genetic Drift – random change in allele frequencies in a population from generation to generation due to finite population size.

Mutation – an error in the replication of DNA that causes a structural change in a gene. Only source of new genetic variation in populations (sex cells only).

Gene Flow – exchange of genetic information among population via migration of individuals.

Natural Selection – differential contribution of genotypes to the next generation due to differences in survival and reproduction.
Genetic Drift
Random changes in allele frequencies across generations due to finite population size

Gen 1

Breeding Individuals (2)
Aa

Aa

Gametes (many)
A
a
A
A
a
A

Gen 2

Breeding Individuals (2)
Aa

Aa

Gametes (many)
A
a
A
A
a
a
A

Gen 3

Breeding Individuals (2)
AA

AA

Gametes (many)
A
A
A
A
A
A
A

P_A = 0.5
P_a = 0.5

P_A = 0.75
P_a = 0.25

P_A = 1.0
P_a = 0
Genetic Drift

• Allele frequencies change over time randomly and some alleles can go extinct or become “fixed”.

• Which alleles frequencies can “drift” in different directions for different populations, resulting in greater differences among populations.
The probability of an allele being lost during a bottleneck of size N_e: $(1 - p)^{2N_e}$, where p is the frequency of the allele, in the generation following the bottleneck.

Rare alleles are lost first during bottlenecks.
Loss of Heterozygosity

• Loss of heterozygosity occurs due to the loss of alleles, but occurs more slowly, particularly compared to rare alleles.

• Per generation loss of heterozygosity (increase in homozygosity) = $1/2N_e$

• Over t generations, the loss of heterozygosity = $1 - (1 - 1/2N_e)^t$
Loss of Genetic Diversity in Small Populations

Theoretical Expectations

![Graph showing the amount of genetic variability remaining over generations for different effective population sizes (Ne). The graph illustrates how the loss of genetic diversity is more rapid in smaller populations.](image)
Mutations

- **Mutation** – an error in the replication of DNA that causes a structural change in a gene.
 - Entire chromosomal complements
 - **Translocations**: the movement of nucleotides from one part of the genome to another.
 - **Duplication**: small number of nucleotides or large pieces of chromosomes
 - **Single nucleotides**: removals, substitutions, or insertions

- E.g., a substitution...

```
CTGGAG
CTGGGG
```
Mutations

- Mutations can offset loss of genetic diversity due to genetic drift, but mutation rates in nature are low, $\sim 10^{-9}$ mutations per locus per generation in protein coding nuclear genes.

- Also, most mutations are harmful and get weeded out of the population, relatively few mutations are beneficial.

\[\text{Frequency of Allele A} \]

\[\text{Time (generations)} \]

\[\text{Mutation occurs, generating allele A} \]

\[\text{---- Beneficial mutation} \]

\[\text{---- Harmful mutation} \]
Selection

• Whether selection increases within-population diversity depends on if selection is stabilizing, disruptive, or directional.

Frequency of Phenotype

1 - Stabilizing Selection
2 - Disruptive Selection
3 - Directional Selection

Before
After
Selection

• In populations of finite size, selection is not the only factor responsible for changes in allele and genotype frequencies.

• For example, stochastic fluctuations occur in the frequency of allele A due to genetic drift, despite a general increase due to directional selection.
Gene Flow

• Increases genetic variation within populations because it brings in new alleles.
• Reduces genetic differences among populations, because alleles are being exchanged
• E.g., Five populations with different initial frequencies \(p \) of allele \(a \) connected by a migration rate \(m \) of 0.05.
Evolutionary Processes that Influence Genetic Diversity

<table>
<thead>
<tr>
<th></th>
<th>Level of Genetic Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Within Pops</td>
</tr>
<tr>
<td>Genetic Drift</td>
<td>↓</td>
</tr>
<tr>
<td>Mutation</td>
<td>↑</td>
</tr>
<tr>
<td>Gene Flow</td>
<td>↑</td>
</tr>
<tr>
<td>Selection</td>
<td>↑↓</td>
</tr>
</tbody>
</table>
Potential Effects of Habitat Fragmentation on Genetic Diversity

- Disrupting gene flow between population A and B and fragmenting habitat between A and C reduces genetic variation in A and C.

- Ultimately allele t or T and allele s or S gets “fixed” in populations B and C.
Increase in Genetic Variation among Populations

(b)

Frequency of allele T in three fragmented populations

![Graph showing the frequency of allele T over time for populations A, B, and C with forest fragmentation indicated.]