I. Colorado Potato Beetle, Neonicotinoid Insensitivity

Antigo Field Day
July 19, 2007

Russell L. Groves
Scott A. Chapman

Department of Entomology
University of Wisconsin
1630 Linden Drive
Madison, WI 53706
Chronology of Insecticide Resistance in Colorado Potato Beetle: Long Island, NY

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>1<sup>st</sup> Introduced</th>
<th>1<sup>st</sup> Failed</th>
<th>Chemical Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbaryl</td>
<td>1957</td>
<td>1958</td>
<td>Carbamate</td>
</tr>
<tr>
<td>Azinphosmethyl</td>
<td>1959</td>
<td>1964</td>
<td>OP</td>
</tr>
<tr>
<td>Phosmet</td>
<td>1973</td>
<td>1973</td>
<td>OP</td>
</tr>
<tr>
<td>Phorate</td>
<td>1973</td>
<td>1974</td>
<td>OP</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>1974</td>
<td>1976</td>
<td>Carbamate</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>1978</td>
<td>1978</td>
<td>Carbamate`</td>
</tr>
<tr>
<td>Fenvalerate</td>
<td>1979</td>
<td>1981</td>
<td>Pyrethroid</td>
</tr>
<tr>
<td>Permethrin</td>
<td>1979</td>
<td>1981</td>
<td>Pyrethroid</td>
</tr>
<tr>
<td>Fenvalerate + PBO</td>
<td>1982</td>
<td>1983</td>
<td>Pyrethroid + synergist</td>
</tr>
<tr>
<td>Esfenvalerate + PBO</td>
<td>1983</td>
<td>1984</td>
<td>Pyrethroid + synergist</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>1995</td>
<td>2000</td>
<td>Nicotinyl</td>
</tr>
</tbody>
</table>
Beneficial Attributes
- Effective on resistant CPB’s
- Broad spectrum
 - CPB, leafhoppers, aphids
- Flexible
 - In-furrow, seed, fertilizer
- Long residual
 - Rate dependant
 - Excessive rain may impact
- Low toxicity
 - “Healthy Grown”

Disadvantages
- Same chemical class (Group 4 MoA)
- Resistance likely
Reported Neo-nicotinoid Use
2003 = 13,330 acres (84% of total potato acres)
2004 = 12,786 acres (70% of total potato acres)
2005 = 12,238 acres (73% of total potato acres)
Mean 12,785 76%

Application(s):
One application = 13,727 acres
Two applications = 3992 acres
Three applications = 1102 acres (??)

Area-wide reliance on nicotinoid insecticide use: need to conserve the effectiveness!!
Michigan, 2005 Imidacloprid Bioassays

Byrne and Grafius (2006): 15 populations, LC_{50} range (0.03 – 4.06)

Reported field control
- Good
- Fair
- Poor

Note: * = significantly greater than LD_{50} for susceptible population
Wisconsin, 2007 Imidacloprid Bioassays

Survey Sites:
- Adams County (8)
- Langlade County (5)
- Oconto County (1)
- Portage County (7)
- Waushara County (9)
Total: (30)

CPB Populations:
- Over-wintered adult
- 2nd generation adult

Adult Topical Bioassays:
Wisconsin 2007, Imidacloprid Bioassays

Preliminary Assays (2007): 9 populations, LC_{50} range (0.03 – 0.69)

Reported field control
- Good
- Fair
- Poor

LD$_{50}$ (µg/beetle)

Location

20X

10X Susceptible LD$_{50}$
Insecticide Resistance Management (IRM): Nicotinyl Insecticides

The Challenge!

Maintaining the effectiveness of nicotinyl insecticides:

- Admire, Provado, Gaucho, Genesis, Leverage, Platinum, Actara, Cruiser, Venom, Poncho, Belay
- All are in same MoA class = 4
- Represent the backbone of CPB management
- Resistance already reported in eastern production areas

Note: Under evaluation / unregistered
Reduced Risk Foliar Options (CPB) New Registrations 2007-08

- **Alverde™ (metaflumizone: BAS-320):**
 - Sodium channel blocker (MoA Group 22)
 - Use rate 4.5 oz a.i./a (CPB) and 16 oz (Lepidoptera)
 - Control of CPB **adults and larvae**
 - 8-12 days persistence
 - Very low impact on beneficials
 - Very low mammalian toxicity (Tox. units ca. 20-30)
 - Section 3 Registration (Nov 2007)
Altacor™ *(rynaxypyr: DPX-E2Y45)*

- Anthranilic diamide (chitin inhibitor: MoA group 28)
 - Use rate 3.5 - 5 oz a.i./a (CPB)
 - Control of CPB *adults and larvae* and Leps
- 14+ days persistence
- Very low impact on beneficials
- Low mammalian toxicity (Tox. units ca. 20-30)
- Section 3 Registration (2008)
Full Season Insect Control
Hancock, WI (2007)

I. Cruiser 5FS (0.16 oz/cwt) + Altacor 35 WG (3.0 fl oz/A)

II. Admire Pro 4.6SC (7.0 fl oz/A) + Alverde 2SC (4.5 fl oz/A)

III. Agri-Mek 0.15EC (8.0 fl oz/A) + Endigo 2SC (4.0 fl oz/A)

IV. Altacor 35 WG (3.0 fl oz/A) + Actara 25WG (3.0 oz/A)

V. Actara 25WG (3.0 oz/A) + Agri-Mek 0.15EC (8.0 fl oz/A)

VI. Assail 70 WP (4.0 oz/A) + Altacor 35 WG (3.0 fl oz/A)

VII. SpinTor 2SC (6.0 fl oz/A) + Altacor 35 WG (3.0 fl oz/A)

VIII. Rimon 0.83EC (12.0 fl oz/A) + Alverde 2SC (4.5 fl oz/A)

IX. Alverde 2SC (4.5 fl oz/A) + Radiant 2SC (4.5 fl oz/A)
Potato virus Y (PVY) reemergence in the United States and Canada

Asymptomatic varieties and imported seed

Improve diagnostics for PVY detection in seed
- DAS-ELISA
- RT-PCR assays (inconsistent results)

Objective: Examine how the timing of PVY infection can influence:
1.) frequency of tuber infection
2.) distribution within tubers
QUESTIONS??