Integrated Pest Management of Key Insect Pests in Cucurbits: Emphasizing Cucumber Beetles

Russell L. Groves
Department of Entomology
537 Russell Laboratories
1630 Linden Drive
Madison, WI 53706
groves@entomology.wisc.edu

January 5, 2009

2009 Wisconsin Fresh Fruit and Vegetable Conference
Wisconsin Vegetable Production Statistics
(Wis. Ag. Stats. 2007)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Nat. Rank</th>
<th>Acres</th>
<th>% of U.S.</th>
<th>$ Value (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td>4</td>
<td>64,500</td>
<td>7</td>
<td>$209</td>
</tr>
<tr>
<td>Sweet corn (Proc)</td>
<td>2</td>
<td>97,400</td>
<td>23</td>
<td>$51</td>
</tr>
<tr>
<td>Carrot (Proc)</td>
<td>1</td>
<td>4,100</td>
<td>29</td>
<td>$5</td>
</tr>
<tr>
<td>Snap beans</td>
<td>1</td>
<td>74,000</td>
<td>35</td>
<td>$31</td>
</tr>
<tr>
<td>Peas</td>
<td>2</td>
<td>38,500</td>
<td>21</td>
<td>$19</td>
</tr>
<tr>
<td>Minor crops (vine crops)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucumbers (pickles)</td>
<td>4</td>
<td>6,100</td>
<td>6</td>
<td>$9</td>
</tr>
<tr>
<td>Melon (cantaloupe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melon (watermelon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melon (honeydew)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpkins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squash (winter and summer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Small-acreage fresh market production continues to expand. Anecdotal statistics estimate ca. 1,500 small-acreage producers that grow over 50 crops in Wisconsin.
National Vegetable Production Acres (NASS 2002)
Cucurbit Insect Control

- Insect management:
 - Generally similar insect pests on all
 - Insects may be more severe on some crops and in different geographic regions
Cucurbit IPM

Presentation Outline

➢ Current and Emerging Key Insect Pests:
 ** seed corn maggot
 ** squash bug
 ** squash vine borer
 ** spider mites

➢ Cucumber Beetles and Pollinators
 ** new technologies and implications for conservation
Calendar of Insect Pests

<table>
<thead>
<tr>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Squash Bug**
- **Cucumber Beetles**
- **Pickleworm**
- **Squash Vine Borer**
- **Whiteflies**
- **Aphids**
- **Mites**
- **Thrips**
- **Leafminers**
- **Seed maggots**
- **Flea beetles**
Seed corn maggot, *Delia platura*

Life cycle

Adult
- Small grey/black fly
- Similar to housefly

Eggs
- Small, white
- Laid in soil at base of plants

Larvae
- White, legless maggots
- 4 instars; up to 1/4”
- 3-4 weeks per generation
- 3-5 generations per year

Pupa
- Brown, oval shaped
- In soil
Seed corn maggot, Host range

- Wide host range
- Can develop on organic matter

<table>
<thead>
<tr>
<th>Crop Susceptibility</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cucurbits (squash, cucumber, melon)</td>
<td>Peas</td>
<td>Brassica (broccoli, cauliflower)</td>
<td></td>
</tr>
<tr>
<td>Beans (lima, snap)</td>
<td>Beans (soy, kidney)</td>
<td>Corn</td>
<td></td>
</tr>
</tbody>
</table>
Seed corn maggot: Seedling damage

Occurrence

- Overwinter in soil as pupa
- Adults emerge in spring
- 4-5 generations/year. 2nd adult peak in May/June is usually most serious

Damage

- Larvae hatch and tunnel germinating seeds
- Larvae feed in seed and developing plant and prevent emergence or severely distort plant.
- Moderate feeding may injure 1st leaves only giving crop a ragged appearance
- Cool weather, which delays plant emergence increases severity of damage
Seed corn maggot: Management

Cultural
- Prevent egg laying with row cover
- Speed up germination:
 - pre-sprout, mulch, warm soil
- Avoid green manure

Biological
- Predacious soil beetles
- Fungal epidemics

Chemical
- In-furrow, insecticides (neonicotinoids*, bifenthrin)
- Commercial seed treatments (Lorsban 50W)

*Not registered for target
Chlorpyrifos

- Lorsban® 50W
- 2 oz / 100 lb seed
- commercial seed treatments (no on-farm use)
- Incotec, Seed Dynamics

Bifenthrin

- Capture® LFR
- 3.4 – 8.5 fl oz / acre
- in-furrow, banded, or broadcast applications
Squash bug, *Anasa tristis*

Occurrence
- Adults are large black bugs which aggregate on plants
- Round eggs are laid in neat rows
- Nymphs are white/grey

Damage
- Phytotoxic saliva causes wilting
- Cucurbit yellow vine decline
 - Hubbard and winter squash more severely affected
Squash bug - Management Thresholds

Seedling Stage

- Treat if wilting and squash bugs are observed

Flowering Stage

- Treat if > 1 egg mass is found per plant

Control

- Systemic neonicotinoids*
- Foliar insecticides
- Cultural:
 - sanitation – remove overwintering sites
 - destroy crop residue

*Squash bug egg mass

*Not registered for target
Squash bug: Insecticide Options

- **imidaclopid, thiamethoxam, dinotefuran**
 - Admire® Pro, Platinum® 2SC, Venom® 20SG
 - Labeled application rates (in-furrow)

- **zeta-cypermethrin, bifenthrin**
 - Mustang Max® EC, Brigade® 2SC
 - Labeled application rates
 - Caution with non-targets

- **lambda-cyhalothrin + chlorantraniliprole**
 - Voliam Xpress (6 – 9 fl oz / acre)
Two-spotted spider mites, *Tetranychus urticae*

Occurrence
- Usually occur in hot dry conditions
- More severe during dusty conditions
- Multiple generations on undersurface of leaf

Damage
- Adults feed in large numbers on leaf surface causing “silvering”
- Lower surface often covered with webbing
- Late season pest
- Can be ‘flared’ by pyrethroids
Spider mite, Management

Cultural
- Maintain good plant growth, irrigate
- Avoid excess dust

Biological
- Several effective predators
- Avoid broad-spectrum insecticides

Chemical
- Unless necessary, do not use
- ‘Hormoligosis’: boosts egg production
- Acramite, Agri-Mek, Zeal, M-pede
Two-spotted Spider Mite: Insecticide / Miticide Options

spiromesifen
- Oberon® 2SC
- 7 – 8.5 fl oz / acre
- minimal non-target effects

etoxazole (on melons only)
- Zeal®
- effective ovicide

bifenthrin
- Brigade® 2SC
- 5.1 – 6.4 fl oz / acre
Squash Vine Borer

Occurrence

- Adults are diurnal, wasp-like moths
- Lay eggs singly on vines
- Larvae bore into plants and destroy vascular tissues = wilting and death.
- Not a pest of watermelon, muskmelon, or cucumbers
- Emerging issue on winter squash (Hubbard) and pumpkin
- Occasional second generation
Squash Vine Borer Control

Sampling
- Field history: past problems = future problems
- Often more serious in smaller plantings
- Pheromone traps; emergence of adults at 1,000 DD$_{50}$
- Direct observation = entrance holes & frass

Cultural
- Practice good field sanitation
- destroy residue

Chemical (re-application)
- Pyrethroids, pyrethins
- Sevin (XLR), Thiodan
- *Bacillus thuringiensis* var. ‘kurstaki’
Squash Vine Borer: Insecticide Options

zeta-cypermethrin, bifenthrin
- Mustang Max® EC, Brigade® 2SC
- labeled application rates
- caution with non-targets

lambda-cyhalothrin + chlorantraniliprole
- Voliam Xpress (6 – 9 fl oz / acre)

Note: directed application to the first 12-16” of vine; ‘post-chicory bloom’.
A3688 (http://www.uwex.edu/ces/pubs)
Striped cucumber beetle
(*Acalymma vittatum*)
Striped and Spotted Cucumber Beetles

Lifecycle

- Adult beetles 8-10 mm length and 3-4 mm wide

- Striped cucumber beetle
 Acalymma vittatum

- Spotted cucumber beetle
 Diabrotica undecimpunctata

- Striped cucumber beetles overwinter in protected areas as adults and become active in mid-spring.

- Appear early, lay eggs at the base of cucurbits, and have 2 generations / year

- Striped is most severe
Cucumber Beetles: Damage

- Defoliation
- Pollination interference
- Feeding scars
- Rindworms
Cucumbers Beetles - Bacterial Wilt

- Most damage is from bacterial wilt, *Erwinia tracheiphila*
- Closely associated with beetle, vectored via posterior-station
- No cure for bacteria, control through vector
- Susceptibility:

 Melons (not watermelon) > cucumbers > butternut and Hubbard squash

Causal Organism - *Erwinia tracheiphila*, which is transmitted by cucumber beetle adults
Management - Bacterial Wilt

- Avoidance of bacterial wilt is accomplished through effective cucumber beetle control.
- Cucumber beetles are not always present.
- Cucumber beetles are not efficient vectors of the bacterium.
- Sampling can be accomplished with yellow sticky traps.
- Established Thresholds (direct counts):
 - 1 beetle / plant for melons, cucumbers, and young pumpkins
 - 5 beetles / plant for watermelon, squash, and older pumpkins
General Approaches Taken to Manage Insects that Attack Vegetable Crops – IPM Tactics

Managing Vegetable Insect Pests

- Chemical Control
- Plant Resistance
- Cultural Control
- Behavioral Control
- Biological Control
General Approaches Taken to Manage Cucumber Beetles

Chemical Control

Plant Resistance

Behavioral Control

Cultural Control

Biological Control
Cucumber beetles: Management

Cultural
- Later planting
- Eliminate weeds, weedy edges
 - sanitation - pollinators
- Row cover early
- Crop rotation
- Transplants
- Trap crops on plastic mulches

Biological
- None effective

Chemical
- Avoid flowering to protect bees (late afternoon sprays)
- At-plant systemic (nicotinyls), foliar insecticides (pyrethroids, carbaryl), and new technologies (seed trt’s)

Row cover and seed treatment experiments, AAES 2008
Cucumber Beetle: Insecticide Options

bifenthrin, delta-methrin, & zeta-cypermethrin

- Brigade® 2SC, Delta Gold™ 1.5EC, and Mustang Max® EC
- labeled application rates
- caution with non-targets

lambda-cyhalothrin + chlorantraniliprole

- Voliam Xpress (6 – 9 fl oz / acre)

thiamethoxam + chlorantraniliprole

- Durivo (10 – 13 fl oz / acre)
Systemic Neonicotinyl Insecticides

Beneficial Attributes

- Broad spectrum
 - Cucumber beetles, squash bugs, aphids
- Flexible
 - Furrow, drench, foliar
- Long residual
 - Rate dependant
 - Excessive rain may impact
- Low toxicity
 - Soil applied

Disadvantages

- Same chemical class (Group 4 MoA)
- Pollinator impact as foliar applications
Cucumber Beetle Seed Treatment Trials, AAES 2008

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insecticide</th>
<th>Rate</th>
<th>Application Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated control</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>clothianadin + imidacloprid</td>
<td>1 mg + 0.33 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.75 + 0.25 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.375 + 0.125 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.187 + 0.063 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>6</td>
<td>thiamethoxam</td>
<td>0.75 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>11.0 fl oz / acre</td>
<td>In-furrow</td>
</tr>
<tr>
<td>8</td>
<td>row cover + thiamethoxam</td>
<td>0.75 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>9</td>
<td>row cover</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Cucumber Beetle Seed Treatments

- Arranged as RCBD with 4 replicates over plastic
- Weekly counts: 1) cucumber beetles, 2) bacterial wilt
- Yield and quality

Pickling varieties ‘Treasure’ (○) and ‘Sassy’ (●)
Cucumber Beetle Seed Treatments

<table>
<thead>
<tr>
<th>Trt No.</th>
<th>Insecticide Treatment</th>
<th>Mean Weekly Beetle / Plant</th>
<th>Mean Percent Bacterial Wilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>untreated control</td>
<td>2.4 ± 0.2 a</td>
<td>42.5 ± 3.4 a</td>
</tr>
<tr>
<td>2</td>
<td>clothianadin + imidacloprid (1.33 mg)</td>
<td>1.0 ± 0.2 c</td>
<td>18.5 ± 2.9 b</td>
</tr>
<tr>
<td>3</td>
<td>(1.0 mg)</td>
<td>0.9 ± 0.2 c</td>
<td>22.5 ± 1.9 b</td>
</tr>
<tr>
<td>4</td>
<td>(0.5 mg)</td>
<td>1.4 ± 0.1 bc</td>
<td>17.5 ± 4.4 bc</td>
</tr>
<tr>
<td>5</td>
<td>(0.25 mg)</td>
<td>1.8 ± 0.2 b</td>
<td>40.0 ± 3.4 a</td>
</tr>
<tr>
<td>6</td>
<td>thiamethoxam (0.75 mg)</td>
<td>0.8 ± 0.1 c</td>
<td>16.4 ± 2.3 bc</td>
</tr>
<tr>
<td>7</td>
<td>(11.0 fl oz / acre)</td>
<td>0.7 ± 0.1 c</td>
<td>8.0 ± 1.6 d</td>
</tr>
<tr>
<td>8</td>
<td>row cover + thiamethoxam (0.75 mg)</td>
<td>1.0 ± 0.2 c</td>
<td>2.2 ± 2.1 e</td>
</tr>
<tr>
<td>9</td>
<td>row cover</td>
<td>0.9 ± 0.1 c</td>
<td>12.5 ± 3.4 c</td>
</tr>
<tr>
<td></td>
<td>Prob F</td>
<td>0.0093</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Insects Impact Cucurbit Production

Pollinators...

...and Devastators

European honey bee

Striped cucumber beetle
Factors Harming Honey Bee Populations

- **Insecticides:**
 - Do not apply to crops in bloom
 - Application timing: apply in the late afternoon or early evening
 - Choose short residual products
 - Adjust spray to weather conditions
 - **low temps extend residual**
 - **protract foraging times**
 - Application formulation (s):
 - EC > WP, WSP, D
Can we rely on honey bees to pollinate cucurbit crops?

American Farmland Trust's, 2008 FQPA EPA Region 5 Grant Program

“Sustainable Management Solutions for the Cucumber Beetle – Bacterial Wilt Pathosystem in Wisconsin”
Influence of Agricultural Practices on Populations of Native Bees

- To identify the most common native bee species that visit and pollinate cucurbit flowers

- Determine periods during season that dominant bee species are most and least prevalent

- To determine how different types of farming practices and pest management practices affect populations of the most common native bee species
Acknowledgements

Bill Halfman
A.J. Bussan
Amy Charkowski

Joe Kauffman
Jerry Schneider
Lisa Riniker
Crist Hershberger
Melvin Yoder
Brian Nelson

QUESTIONS?

Wisconsin Fresh Market
Vegetable Growers Association