New Technologies and Tactics for IPM in Snap Beans and Cucurbits

Central Wisconsin Processing Crops Meeting
March 11, 2009

Russell L. Groves

1Department of Entomology
537 Russell Laboratories
1630 Linden Drive
Madison, WI 53706

groves@entomology.wisc.edu
Wisconsin Vegetable Production Statistics (Wis. Ag. Stats. 2007)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Nat. Rank</th>
<th>Acres</th>
<th>% of U.S.</th>
<th>$ Value (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td>4</td>
<td>64,500</td>
<td>7</td>
<td>$209</td>
</tr>
<tr>
<td>Sweet corn (Proc)</td>
<td>2</td>
<td>97,400</td>
<td>23</td>
<td>$51</td>
</tr>
<tr>
<td>Carrot (Proc)</td>
<td>1</td>
<td>4,100</td>
<td>29</td>
<td>$5</td>
</tr>
<tr>
<td>Snap beans</td>
<td>1</td>
<td>74,000</td>
<td>35</td>
<td>$31</td>
</tr>
<tr>
<td>Peas</td>
<td>2</td>
<td>38,500</td>
<td>21</td>
<td>$19</td>
</tr>
<tr>
<td>Minor crops (vine crops)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucumbers (pickles)</td>
<td>4</td>
<td>6,100</td>
<td>6</td>
<td>$9</td>
</tr>
<tr>
<td>Melon (cantaloupe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melon (watermelon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melon (honeydew)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pumpkins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squash (winter and summer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Small-acreage fresh market production continues to expand. Anecdotal statistics estimate ca. 1,500 small-acreage producers that grow over 50 crops in Wisconsin.
Snap bean insect control

- Relatively few insect pests
- Highly pest resistant plant
- Ecology, biology of key pests has reduced insecticide use.

- Seed corn maggot
- European corn borer
- Potato leafhopper
European corn borer (ECB)

Appearance
- Adults, gray / brown (1/2”)
- Nocturnal

Occurrence
- Overwinters in Wisconsin
- Broad host range
- Beans, sweet corn, field corn, potatoes, peppers
- 2-3 generations/year
ECB Lifecycle

Eggs
- Laid in masses (20-50)
- Black dots at hatch, 5-7 days

Larva
- Overwinter in corn stalks
- 5 instars (2-4 weeks) 1\(^{st}\) and 2\(^{nd}\) external.

Adult
- 2 normal flight peaks June-Aug (1400 \(DD_{50}\) and 1733 \(DD_{50}\))

Pupae
- Inside stems 10-14 days
ECB: Snap bean damage

- Small larvae external
- Damage marginal

- Pods preferred if present
- Serious problem

- Later instars bore into stems
- Plants easily compensate

- Rejection threshold 1/1000
Processing Snap Bean
Production Intervals in Wisconsin

Planting

Harvesting

Date
ECB Management

1. Predict flight with degree days:
 - 1st = 375 DD\textsubscript{50}, 2nd 1400 DD\textsubscript{50}
 - 3rd generation possible in warm years (1733 DD\textsubscript{50})

2. Monitor flights:
 - State network of flight traps
 - DATCP survey

3. Treat plants @ early bloom
 - Blacklight traps:
 (15 & 100 moths/night, 1st and 2nd generation)
New Insecticide Registrations, 2009-10

- **Assail (UPI) revisions - 2008**
 Aphids, Potato leafhopper, Bean leaf beetle, Mexican bean beetle

- **Coragen* (DuPont) Target late 2009-10**
 IR-4 PCR’s completed and submitted to EPA (rynaxypyr)

- **Radiant (Dow AgroSciences)**

- **Lorsban Advanced (Dow AgroSciences)**
 Armyworm, Cutworm and Seed corn maggot

- **Brigade (FMC)**
 bifenthrin

- **Hero (FMC)**
 Pre-mix of zeta-cypermethrin and bifenthrin

- **Brigadier (FMC)**
 Pre-mix of bifenthrin and imidacloprid
ECB Control on Snap Beans:
Foliar Insecticides – Arlington, WI 2008

- University of Wisconsin, Arlington Res Station
- Planting date of May 30, 2008
- Artificial infestations; July 20, July 26
 Five consecutive plants per plot
 Each plant infested with 10 egg masses
- Single foliar application on July 23
- Backpack sprayer delivering 26.5 gpa
- Plot size 4 rows by 25 feet
ECB Control: Registered Foliar Sprays 3 Days Prior to Application (=Cleanup).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate/A</th>
<th>Damaged stems</th>
<th>Larvae in stems</th>
<th>% Pod damage</th>
<th>Larvae in pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>---</td>
<td>5.3 ab</td>
<td>2.3 a</td>
<td>22.0 b-g</td>
<td>4.0 abc</td>
</tr>
<tr>
<td>Orthene</td>
<td>1.0 lb.</td>
<td>1.3 ef</td>
<td>0.0 e</td>
<td>10.5 fgh</td>
<td>0.5 ef</td>
</tr>
<tr>
<td>Lannate</td>
<td>3 pt.</td>
<td>3.3 b-f</td>
<td>1.3 a-d</td>
<td>26.9 abc</td>
<td>4.8 ab</td>
</tr>
<tr>
<td>Brigade</td>
<td>4.5 oz.</td>
<td>2.0 def</td>
<td>0.0 e</td>
<td>10.0 fgh</td>
<td>2.0 b-f</td>
</tr>
<tr>
<td>Warrior</td>
<td>3.84 oz.</td>
<td>2.0 def</td>
<td>0.5 cde</td>
<td>10.3 fgh</td>
<td>2.3 b-f</td>
</tr>
<tr>
<td>Mustang Max</td>
<td>4 oz.</td>
<td>4.3 a-d</td>
<td>1.5 abc</td>
<td>15.0 c-h</td>
<td>3.0 b-f</td>
</tr>
<tr>
<td>Spintor</td>
<td>6 oz.</td>
<td>1.5 ef</td>
<td>0.0 e</td>
<td>8.1 h</td>
<td>0.3 f</td>
</tr>
<tr>
<td>Radiant</td>
<td>6 oz.</td>
<td>1.3 ef</td>
<td>0.3 de</td>
<td>11.0 e-h</td>
<td>2.8 b-f</td>
</tr>
<tr>
<td></td>
<td>8 oz.</td>
<td>1.3 ef</td>
<td>0.5 cde</td>
<td>6.7 h</td>
<td>0.8 def</td>
</tr>
</tbody>
</table>
ECB Control: Registered Foliar Sprays
3 Days Prior to Application (=Cleanup).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate/A</th>
<th>Damaged stems</th>
<th>Larvae in stems</th>
<th>% Pod damage</th>
<th>Larvae in pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>---</td>
<td>5.3 ab</td>
<td>2.3 a</td>
<td>22.0 b-g</td>
<td>4.0 abc</td>
</tr>
<tr>
<td>cyazapyr¹</td>
<td>1.72 oz.</td>
<td>5.3 ab</td>
<td>1.8 ab</td>
<td>36.0 a</td>
<td>4.3 abc</td>
</tr>
<tr>
<td>Coragen¹</td>
<td>3.5 oz.</td>
<td>2.0 def</td>
<td>0.0 e</td>
<td>8.4 h</td>
<td>0.5 ef</td>
</tr>
<tr>
<td></td>
<td>5 oz.</td>
<td>3.5 b-f</td>
<td>1.0 b-e</td>
<td>9.3 gh</td>
<td>0.3 f</td>
</tr>
<tr>
<td>Avaunt²</td>
<td>6 oz.</td>
<td>2.3 c-f</td>
<td>0.5 cde</td>
<td>13.7 c-h</td>
<td>2.8 b-f</td>
</tr>
<tr>
<td>Rimon</td>
<td>12 oz.</td>
<td>2.5 c-f</td>
<td>0.5 cde</td>
<td>17.1 c-h</td>
<td>2.3 b-f</td>
</tr>
</tbody>
</table>

¹MSO added at 0.5% v/v.
²Note: Not registered for use on legume – succulent bean
ECB Control: Registered Foliar Sprays

3 Days Post Application (=Residual).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate/A</th>
<th>Damaged stems</th>
<th>Larvae in stems</th>
<th>% Pod damage</th>
<th>Larvae in pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>---</td>
<td>5.3 ab</td>
<td>1.8 a</td>
<td>11.8 b-f</td>
<td>3.0 abc</td>
</tr>
<tr>
<td>Orthene</td>
<td>1.0 lb.</td>
<td>0.3 g</td>
<td>0.0 d</td>
<td>0.0 k</td>
<td>0.0 g</td>
</tr>
<tr>
<td>Lannate</td>
<td>3 pt.</td>
<td>5.0 a</td>
<td>2.0 ab</td>
<td>18.0 ab</td>
<td>2.8 ab</td>
</tr>
<tr>
<td>Brigade</td>
<td>4.5 oz.</td>
<td>1.8 c-g</td>
<td>0.3 d</td>
<td>0.4 k</td>
<td>0.3 fg</td>
</tr>
<tr>
<td>Warrior</td>
<td>3.84 oz.</td>
<td>1.5 d-g</td>
<td>0.3 d</td>
<td>0.0 k</td>
<td>0.0 g</td>
</tr>
<tr>
<td>Mustang Max</td>
<td>4 oz.</td>
<td>0.8 g</td>
<td>0.5 cd</td>
<td>1.0 jk</td>
<td>0.3 fg</td>
</tr>
<tr>
<td>Spintor</td>
<td>6 oz.</td>
<td>2.0 c-g</td>
<td>0.3 d</td>
<td>4.0 g-k</td>
<td>0.3 fg</td>
</tr>
<tr>
<td>Radiant</td>
<td>6 oz.</td>
<td>2.0 c-g</td>
<td>1.0 a-d</td>
<td>2.6 ijk</td>
<td>0.5 fg</td>
</tr>
<tr>
<td></td>
<td>8 oz.</td>
<td>1.3 efg</td>
<td>0.3 d</td>
<td>3.1 h-k</td>
<td>0.0 g</td>
</tr>
<tr>
<td>Treatment</td>
<td>Rate/A</td>
<td>Damaged stems</td>
<td>Larvae in stems</td>
<td>% Pod damage</td>
<td>Larvae in pods</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Untreated</td>
<td>---</td>
<td>5.3 ab</td>
<td>1.8 a</td>
<td>11.8 b-f</td>
<td>3.0 abc</td>
</tr>
<tr>
<td>cyazapyr¹</td>
<td>1.72 oz.</td>
<td>5.5 a</td>
<td>0.3 d</td>
<td>13.9 a-e</td>
<td>1.3 c-f</td>
</tr>
<tr>
<td>Coragen¹</td>
<td>3.5 oz.</td>
<td>1.0 fg</td>
<td>0.0 d</td>
<td>1.1 jk</td>
<td>0.0 g</td>
</tr>
<tr>
<td></td>
<td>5 oz.</td>
<td>1.5 d-g</td>
<td>0.3 d</td>
<td>0.8 k</td>
<td>0.0 g</td>
</tr>
<tr>
<td>Avaunt²</td>
<td>6 oz.</td>
<td>1.5 d-g</td>
<td>0.5 cd</td>
<td>2.8 h-k</td>
<td>0.5 fg</td>
</tr>
<tr>
<td>Rimon</td>
<td>12 oz.</td>
<td>2.5 b-g</td>
<td>0.3 d</td>
<td>7.4 e-j</td>
<td>1.3 c-f</td>
</tr>
</tbody>
</table>

¹MSO added at 0.5% v/v.
²Note: Not registered for use on legume – succulent bean
ECB Control on Snap Beans: Systemic Insecticides – Arlington, WI 2008

- University of Wisconsin, Arlington Res Station
- Planting date of May 30, 2008
- Artificial infestations; July 20
 Five consecutive plants per plot
 Each plant infested with 10 egg masses
- In-furrow application (at-plant)
 Backpack sprayer delivering 4.5 gpa
- Plot size 4 rows by 25 feet

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Rate/A</th>
<th>Placement</th>
<th>% Damaged stems</th>
<th>% Damaged pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>---</td>
<td>---</td>
<td>84.0 a</td>
<td>12.9 a</td>
</tr>
<tr>
<td>cyazapyr¹</td>
<td>3.5 oz.</td>
<td>In furrow</td>
<td>80.0 a</td>
<td>7.5 ab</td>
</tr>
<tr>
<td></td>
<td>5.0 oz.</td>
<td>In furrow</td>
<td>46.0 ab</td>
<td>3.5 b</td>
</tr>
<tr>
<td></td>
<td>9.5 oz.</td>
<td>In furrow</td>
<td>24.0 b</td>
<td>2.7 b</td>
</tr>
<tr>
<td>Coragen¹</td>
<td>3.5 oz.</td>
<td>In furrow</td>
<td>52.0 ab</td>
<td>7.2 ab</td>
</tr>
<tr>
<td></td>
<td>6.0 oz.</td>
<td>In furrow</td>
<td>48.0 b</td>
<td>4.4 b</td>
</tr>
</tbody>
</table>

¹Note: Not registered for use on legume – succulent bean
Striped cucumber beetle

(Acalymma vittatum)
Striped and Spotted Cucumber Beetles

Lifecycle

- Adult beetles 8-10 mm length and 3-4 mm wide
- Striped cucumber beetle *Acalymma vittatum*
- Spotted cucumber beetle *Diabrotica undecimpunctata*
- Striped cucumber beetles overwinter in protected areas as adults and become active in mid-spring.
- Appear early, lay eggs at the base of cucurbits, and have 2 generations / year
- Striped is most severe
Cucumber Beetles: Damage

- Defoliation
- Pollination Interference
- Feeding Scars
- Rindworms
Cucumber Beetles - Bacterial Wilt

- Most damage is from bacterial wilt, *Erwinia tracheiphila*

- Closely associated with beetle, vectored via posterior-station

- No cure for bacteria, control through vector

- Susceptibility:

 Melons (not watermelon) > cucumbers > butternut and Hubbard squash

Causal organism = *Erwinia tracheiphila*; Transmitted by cucumber beetle adults
Management - Bacterial Wilt

- Avoidance of bacterial wilt is accomplished through effective cucumber beetle control.
- Cucumber beetles are not always present.
- Cucumber beetles are not efficient vectors of the bacterium.
- Sampling can be accomplished with yellow sticky traps.

Established Thresholds (direct counts):

- 1 beetle / plant for melons, cucumbers, and young pumpkins
- 5 beetles / plant for watermelon, squash, and older pumpkins
General Approaches Taken to Manage Insects that Attack Vegetable Crops – IPM Tactics

Managing Vegetable Insect Pests

- Chemical Control
- Plant Resistance
- Behavioral Control
- Cultural Control
- Biological Control
General Approaches Taken to Manage Cucumber Beetles

- Chemical Control
 - Plant Resistance
 - Cultural Control
 - Behavioral Control
 - Biological Control
Cucumber beetles: Management

Cultural
- Later planting
- Eliminate weeds, weedy edges
 sanitation - pollinators
- Row cover early
- Crop rotation
- Transplants
- Trap crops on plastic mulches

Biological
- None effective

Chemical
- Avoid flowering to protect bees (late afternoon sprays)
- At-plant systemic (nicotinyls), foliar insecticides (pyrethroids, carbaryl), and new technologies (seed trt’s)
Cucumber Beetle: Insecticide Options

bifenthrin, delta-methrin, & zeta-cypermethrin

- Brigade® 2SC, Delta Gold™ 1.5EC, and Mustang Max® EC
- labeled application rates
- caution with non-targets

lambda-cyhalothrin + chlorantraniliprole

- Voliam Xpress (6 – 9 fl oz / acre)

thiamethoxam + chlorantraniliprole

- Durivo (10 – 13 fl oz / acre)
Systemic Neonicotinyl Insecticides

Beneficial Attributes

- **Broad spectrum**
 - Cucumber beetles, squash bugs, aphids
- **Flexible**
 - Furrow, drench, foliar
- **Long residual**
 - Rate dependant
 - Excessive rain may impact
- **Low toxicity**
 - Soil applied

Disadvantages

- Same chemical class (Group 4 MoA)
- Pollinator impact as foliar applications
Cucumber Beetle Seed Treatment Trials, AAES 2008

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insecticide</th>
<th>Rate</th>
<th>Application Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Untreated control</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>clothianadin + imidacloprid</td>
<td>1 mg + 0.33 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>3</td>
<td>clothianadin + imidacloprid</td>
<td>0.75 + 0.25 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>4</td>
<td>clothianadin + imidacloprid</td>
<td>0.375 + 0.125 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>5</td>
<td>clothianadin + imidacloprid</td>
<td>0.187 + 0.063 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>6</td>
<td>thiamethoxam</td>
<td>0.75 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>7</td>
<td>11.0 fl oz / acre</td>
<td>In-furrow</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>row cover + thiamethoxam</td>
<td>0.75 mg a.i. / seed</td>
<td>Seed</td>
</tr>
<tr>
<td>9</td>
<td>row cover</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Cucumber Beetle Seed Treatments

- Arranged as RCBD with 4 replicates over plastic
- Weekly counts: 1) cucumber beetles, 2) bacterial wilt, 3) yield and quality

Pickling varieties ‘Treasure’ (●) and ‘Sassy’ (○)
Cucumber Beetle Seed Treatments

<table>
<thead>
<tr>
<th>Trt No.</th>
<th>Insecticide Treatment</th>
<th>Mean Weekly Beetle / Plant</th>
<th>Mean Percent Bacterial Wilt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>untreated control</td>
<td>2.4 0.2 a</td>
<td>42.5 3.4 a</td>
</tr>
<tr>
<td>2</td>
<td>clothianadin + imidacloprid (1.33 mg)</td>
<td>1.0 0.2 c</td>
<td>18.5 2.9 b</td>
</tr>
<tr>
<td>3</td>
<td>(1.0 mg)</td>
<td>0.9 0.2 c</td>
<td>22.5 1.9 b</td>
</tr>
<tr>
<td>4</td>
<td>(0.5 mg)</td>
<td>1.4 0.1 bc</td>
<td>17.5 4.4 bc</td>
</tr>
<tr>
<td>5</td>
<td>(0.25 mg)</td>
<td>1.8 0.2 b</td>
<td>40.0 3.4 a</td>
</tr>
<tr>
<td>6</td>
<td>thiamethoxam (0.75 mg)</td>
<td>0.8 0.1 c</td>
<td>16.4 2.3 bc</td>
</tr>
<tr>
<td>7</td>
<td>(11.0 fl oz / acre)</td>
<td>0.7 0.1 c</td>
<td>8.0 1.6 d</td>
</tr>
<tr>
<td>8</td>
<td>row cover + thiamethoxam (0.75 mg)</td>
<td>1.0 0.2 c</td>
<td>2.2 2.1 e</td>
</tr>
<tr>
<td>9</td>
<td>row cover</td>
<td>0.9 0.1 c</td>
<td>12.5 3.4 c</td>
</tr>
<tr>
<td></td>
<td>Prob F</td>
<td>0.0093</td>
<td><0.0001</td>
</tr>
</tbody>
</table>
Acknowledgements

Bill Halfman
A.J. Bussan
Amy Charkowski

Joe Kauffman
Jerry Schneider
Lisa Riniker
Crist Hershberger
Melvin Yoder
Brian Nelson

QUESTIONS?