Integrated Pest Management of Ginseng

2010 Spring Ginseng Growers Meeting
Wausau, WI
March 20, 2010

Russell L. Groves
Department of Entomology
University of Wisconsin
1630 Linden Drive
Madison, WI 53706
groves@entomology.wisc.edu
1) Current challenges of managing insect pests

2) Key insect pests of ginseng and new insecticide products

3) Novel delivery systems for water-soluble insecticides
Wisconsin Vegetable Production Statistics
(Wis. Ag. Stats. 2008)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Nat. Rank</th>
<th>Acres</th>
<th>% of U.S.</th>
<th>$ Value (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potatoes</td>
<td>3</td>
<td>64,500</td>
<td>6</td>
<td>$242</td>
</tr>
<tr>
<td>Sweet corn (Proc)</td>
<td>1</td>
<td>88,900</td>
<td>21</td>
<td>$81</td>
</tr>
<tr>
<td>Sweet corn (Fresh)</td>
<td>--</td>
<td>7,700</td>
<td>--</td>
<td>$14</td>
</tr>
<tr>
<td>Snap beans</td>
<td>1</td>
<td>82,300</td>
<td>38</td>
<td>$62</td>
</tr>
<tr>
<td>Peas</td>
<td>3</td>
<td>40,200</td>
<td>21</td>
<td>$20</td>
</tr>
<tr>
<td>Minor crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucumbers (pickles)</td>
<td>4</td>
<td>7,100</td>
<td>8</td>
<td>$9</td>
</tr>
<tr>
<td>Cabbage (fresh)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabbage (kraut)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onions (storage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ginseng</td>
<td>1</td>
<td>1,650</td>
<td>81%</td>
<td>$58</td>
</tr>
</tbody>
</table>

Small-acreage fresh market production continues to expand. Anecdotal statistics estimate ca. 1,900 small-acreage producers that grow over 50 crops in Wisconsin.
Macro-Factors Influencing Insect Pest Management

- Increasing population and changing demographics
- Changes in food consumption
- Decreasing arable land
- Decreasing availability of water
- Food safety
- Concern for the environment
- Global agricultural trade
Factors Influencing Insect Pest Management

‘Food Safety’

– Major food retailers are setting acceptable residue levels below those set by government regulatory agencies.

“No detectable residues” will be a competitive advantage for food retailers.

– Older insecticides that do not meet these requirements are not being re-registered, resulting in increased use of novel insecticides (bio-pesticides).
Factors Influencing Insect Pest Management

‘Environmental Concerns’

– With increasing affluence reaching the developing world, there will be increasing concerns about pesticide usage and perceived environmental effects.

– This will accelerate the shift to “softer” products and technologies.
Factors Influencing Insect Pest Management

‘Water Quantity and Quality’

- Decreasing availability of water for agriculture
 - Agriculture is the overwhelming user of fresh water.
 - Increasing urban demand will drive irrigation efficiency.

- Drip irrigation, micro-sprinklers, hydroponics.

- Targeted application of water increases opportunity to use irrigation as a delivery system.
Wisconsin Insect Pest Management

Options for Insect Pest Management – *More than ever before!*

- Cultural controls
- Natural enemies
- Baits and baiting systems
- Host plant resistance
- Population disruption
- Transgenic plants IR traits
- Reduced-Risk Chemical Insecticides
- Entomopathogens

Vegetable IPM
1) Current challenges of managing insect pests

2) Key insect pests of ginseng and new insecticide products

3) Novel delivery systems for water-soluble insecticides
Varied Ginseng Insect Pests

Key Pests
- Wireworms
- White Grubs
- Cutworms - armyworms

Sporadic Pests
- Four-lined plant bugs
- Leaf rollers
- Aphids

Intermittent Pests
- Thrips
- Scale
- Mealybugs
- Stem borers

White grub (*Phyllophaga* spp.)
Ginseng Insect Pests

Pest Management Strategic Plans (Hausbeck 2007)

Top research priorities identified during the 2007 PSMP Workshop:

1) *Identify new active ingredients effective against grubs, cutworms and wireworms; and*

2) Identify pathogens that may be seedborne and identify effective treatments;

3) Develop management strategies for root rot diseases, including *Phytophthora, Cylindrocarpon, and Fusarium.*
Mint Insect Control: Variegated & Black Cutworm

- Early season leaf damage / stand loss
- Mid to later season leaf damage / localized
Cutworm & Looper Control

Established Thresholds: Undetermined (2-3 larvae ft²)

Early Season:

Diazinon AG600 WBC (0.75 – 1.0 pt / ac)

Candidate Options:

Bifenture EC (0.08 - .1 lb ai/ac)
Coragen (0.046 – 0.065 lb ai/ac)
Avaunt 30 WDG (0.065 – 0.11 lb ai/ac)
Radiant SC (0.03-0.09 lb ai/ac) (2008)
Reduced-Risk Foliar Registrations (2009-10)

- **Radiant® SC (spinetoram)**
 - Macrocyclic lactone (spinosad: MoA group 5)
 - Use rate 4 - 12 oz / ac (Lepidoptera)
 - 10-14 days persistence (improved photostability)
 - Very low impact on beneficials

- **Coragen™ (chlorantraniliprole)**
 - Anthranilic diamide (MoA group 28)
 - Use rate 3 - 6 oz (Lepidoptera) +MSO 5% v/v
 - 14+ days persistence
 - Very low impact on beneficials and low toxicity
 - Ovicidal activity
 - IR-4, Under review

Corn earworm larvae ‘dead’
Wireworms & White Grubs

White grub (June beetle)
- 2-3 year life cycle
- Adults lay eggs in grass
- Larvae feed on tubers 2-3 years

Wireworm (click beetle)
- 4-6 year life cycle
- Adults lay eggs on grass
- Larvae feed 3-5 years on tubers
Wireworms & White Grubs

- Soil-dwelling larvae (grubs) of June and click beetles
- Worldwide in distribution
- Many different species, all with unique lifecycles
- Can be a pest on a wide range of crops:
 - cereals, vegetables, soft fruit, and potatoes

White grub larva

Wireworm larvae
Generalized Wireworm Lifecycles

- Varied, taking 3 – 4 years to develop from egg to adult.
- Nearly all spent in larval stages: egg & pupa = 1 month
- Overwinter at 10 – 24”, movement > 55°F
- Females emerge to mate, then burrow and re-emerge to oviposit

![Diagram showing the life cycle of a wireworm, including stages such as eggs, larvae, and adult emergence.](image-url)
Wireworm Damage

Field corn

Sweetpotato

Transplant Cucumbers

Beans

Peanuts
Wireworm Risk Assessments: Surveillance and Monitoring

- **Placement of bait stations:** spring or fall with warm soils.

- **Polyethylene to warm the surrounding soil and liberate CO₂.**

- **Be mindful of field history for placement. Problems have often been associated with past cropping history (e.g. grasses).**

- **Pheromone traps:** (future evaluation needed)
Wireworm Action Thresholds: Interpreting Trap Counts

<table>
<thead>
<tr>
<th>Mean No. wireworms per station</th>
<th>Risk of Damage</th>
<th>IPM Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Low (< 10%)</td>
<td>Control Not Needed</td>
</tr>
<tr>
<td>< 0.5</td>
<td>Moderate (33%)</td>
<td>Resample soil</td>
</tr>
<tr>
<td>0.5 < X < 1.0</td>
<td>50:50</td>
<td>Resample soil</td>
</tr>
<tr>
<td>1.0 < X < 2.0</td>
<td>Probable (> 50%)</td>
<td>Resample soil</td>
</tr>
<tr>
<td>2.0 < X < 4.0</td>
<td>High (> 75%)</td>
<td>Apply insecticide at-planting</td>
</tr>
<tr>
<td>> 4.0</td>
<td>Extreme</td>
<td>Do not plant</td>
</tr>
</tbody>
</table>
Summary of wireworm insecticide trials - Kuhar et al. 2007

On average, all treatments provide ~60-70% control.
Physical placement of insecticides:

Potato seed and in-furrow, banded insecticide in newly planted field

Developing crop and residual insecticide at harvest
Possible explanations for increasing damage to crops

• Increased rotations with grasses for soil conservation or small grain, corn production
• Relatively mild winters in the last several years
• Changes in the culture of primary rotation crops
• The loss of registration of insecticides with long residual soil activity
 – “Older chemistries (slated for removal by EPA-FQPA) are finally dissipating”. Some materials had a half-life of 20 years.
Important Considerations

- Broadcast treatments sometimes work better than in-furrow treatments, or vice versa.
 - Broadcast good in field with random sources of CO$_2$ (i.e. green manure).
 - In-furrow good in well fallowed fields.

- Treatments expected to work well (e.g. Thimet) sometimes give mediocre results.

- It should be noted, land prep is a critical variable and should always be considered and recorded.

- For growers, they should be informed that competing CO$_2$ sources at planting (e.g. green manure) will reduce pesticide efficacy.
Another Explanation: Climate and Species Composition

D. A. Johnson, 2008
Not all wireworms are created equal

- Different species of wireworms express different responses to insecticides, leading to:
 - Varying levels of crop protection (e.g. potato)
 - Varying levels of intoxication
 - Varying levels of mortality
 - Varying levels of repellency

- Knowing the wireworm(s) we are dealing to the species level is a must if we want to accurately report and compare data.
Changing Cultural Management of Field Corn

- Bt transgenics:
 - Activity against European corn borer, corn earworm, rootworms, cutworms, and armyworms: not wireworm.

- Adoption of transformants continues to increase:
 - 2004 (22%) to 2007 (49%)

- RR Technology has lead to grass competition: armyworm
 - Burn down dates have been extended.

- Land removed from conservation reserve program (CRP):
Difficult Pest Management

- Incomplete understanding of wireworm biology
- Limited availability of completely effective chemicals
- Lack of efficient and labor-friendly monitoring tools which would allow growers to predict likelihood of damage or to assist in decisions about the necessity of insecticide treatment
1) Current challenges of managing insect pests

2) Key insect pests of ginseng and new insecticide products

3) Novel delivery systems for water-soluble insecticides
Drip Application for Insect Control (Cucurbits, Fruiting Vegetables, Brassicas, Potatoes)

• Why use drip irrigation for insecticide applications?

• What insects are controlled with drip application?

• Regulations and tips for best results of drip chemigation.
Pesticide Drift

- Amount of pesticide lost due to drift estimated at 5 to 65%.
- Less than 0.1% of pesticide reaches target insect.
- Consequences of pesticide drift
 - Exposure of humans
 - Exposure of water resources
 - Exposure of wildlife
Limitations of Spraying Insecticides

• Weather conditions
 – Wind
 – Rain
 – Wash-off

• Re-entry intervals

• Pre-harvest intervals
Advantages of Drip Application of Insecticides

• Reduced risk to environment and farm workers
 – Drift to non-target areas is eliminated
 – Farm workers do not come into contact with residues on exterior of plant
 – Beneficial organisms not directly exposed

• Longer residual activity
 – Not subject to loss from rain and UV light
 – Not subject to plant growth dilution effects

• More cost-effective
What Insecticides Can Be Applied in Drip Irrigation Systems

- **Must move systemically through plant.**
- **Label must specifically state that product can be applied via drip irrigation**

Neonicotinoids
- Admire
- Platinum
- Venom

Diamides
- Coragen
- Synapse
- **HGW86**

Carbamates
- Vydate

Durivo
Thiamethoxam & Imidacloprid

- **Platinum 75SG** (1.7 – 4.0 fl oz/ac)
- **Admire Pro** (4.4 – 10.5 fl oz/ac)
 - Brassicas, Cucurbits,
 - Fruiting Veg, Potato, and Ginseng

Spectrum of Activity
- Wireworms, white grubs, plant bugs
- Suppression of aphids, thrips, whiteflies

Systemic activity
- Labeled for foliar and drip irrigation application
Chlorantraniliprole (Rynaxypyr)

- **Coragen 1.67SC**
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg, Potato

- **Spectrum of Activity**
 - Lepidopterans, some beetles (CPB)
 - Wireworm and white grub suppression at higher rates

- **Systemic activity**
 - Labeled for foliar and drip irrigation application

Not currently labeled for Ginseng
Chlorantraniliprole + Thiamethoxam

- **Durivo 1.67SC**
 - 2:1 mixture of thiamethoxam & chlorantraniliprole
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg

- **Spectrum of Activity**
 - Lepidopterans, leafhoppers, cucumber beetle
 - Aphids, Beetles, Plant & Stink Bug, Thrips, White grubs and Wireworms

- Drip application only, 1 application/year.
- 5-day REI for honeybees.

Not currently labeled for Ginseng
Drip Irrigation of Insecticides
ATCP 29 Rule, Pesticide Use and Control, Revised September 2009. ATCP 29.54 Chemigation.

http://datcp.state.wi.us/cp/consumerinfo/cp/cp_laws/pesticides/pesticide_use.pdf
For Best Results with Drip-Applied Insecticides

- Repair all leaks before chemigating.
- Before injection of insecticide begins, system must be fully pressurized.
- **Minimum** injection time should be time for water to move from injection point to most distant emitter.
- **Water solubility and soil texture affects movement in soil, and timing of injection.**
 - Low solubility = limited movement
 - High solubility = readily moves in soil
Conclusions

• Drip application of insecticides offers several advantages over foliar application, including safety, flexibility and longer residual control.

• Combinations of several insecticides with different MoA can achieve broad spectrum insect control.

• Be sure irrigation system is legal for chemigation, and provides uniform distribution of water.
Acknowledgements

Wisconsin Ginseng Growers

QUESTIONS ?