Drip Irrigation Delivery of Reduced Risk Insecticides

January 13, 2011
Vegetable Crop Management – Mendota I

Russell L. Groves
Scott A. Chapman
Department of Entomology
University of Wisconsin
1630 Linden Drive
Madison, WI 53719
groves@entomology.wisc.edu
Wisconsin Vegetable Pest Management

Options for Insect Pest Management – *More than ever before!*

- Cultural controls
- Host plant resistance
- Transgenic plants IR traits
- Natural enemies
- Reduced-Risk Chemical Insecticides
- Baits and baiting systems
- Population disruption
- Entomopathogens

Vegetable IPM
Factors Influencing Insect Pest Management
‘Water Quantity and Quality’

- Decreasing availability of water for agriculture
 - Agriculture is the overwhelming user of fresh water.
 - Increasing urban demand will drive irrigation efficiency.

- Drip irrigation, micro-sprinklers, hydroponics.

- Targeted application of water increases opportunity to use irrigation as a delivery system.
Drip Application for Insect Control (Cucurbits, Fruiting Vegetables, Brassicas)

- Why use drip irrigation for insecticide applications?
- What insects are controlled with drip application?
- Regulations and tips for best results of drip chemigation.
Pesticide Drift

- Amount of pesticide lost due to drift estimated at 5 to 65%.
- Less than 0.1% of pesticide reaches target insect.
- Consequences of pesticide drift
 - Exposure of humans
 - Exposure of water resources
 - Exposure of wildlife
Advantages of Drip Application of Insecticides

- Reduced risk to environment and farm workers
 - Drift to non-target areas is eliminated
 - Farm workers do not come into contact with residues on exterior of plant
 - Beneficial organisms not directly exposed

- Longer residual activity
 - Not subject to loss from rain and UV light
 - Not subject to plant growth dilution effects

- More cost-effective
Drip Application for Insect Control (Cucurbits, Fruiting Vegetables, Brassicas)

- Why use drip irrigation for insecticide application?

- What insects are controlled with drip irrigation applications?

- Regulations and tips for best results of drip chemigation.
What Insecticides Can Be Applied in Drip Irrigation Systems

- Must move systemically through plant.
- Label must specifically state that product can be applied via drip irrigation

Neonicotinoids
- Admire
- Platinum
- Venom

Diamides
- Coragen
- Synapse
- **HGW86**

Carbamates
- Vydate

Durivo
Thiamethoxam & Imidacloprid

- Platinum 75SG – Admire Pro
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg, Potato

- Spectrum of Activity
 - Cucumber beetles, squash bug, flea beetle, seed maggots, & CPB
 - Suppression of aphids, thrips, whiteflies

- Systemic activity
 - Labeled for foliar and drip irrigation application
Chlorantraniliprole (Rynaxypyr)

- **Coragen 1.67SC**
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg, Potato

- **Spectrum of Activity**
 - Lepidopterans, some beetles (CPB)
 - Whitefly suppression at higher rates

- **Systemic activity**
 - Labeled for foliar and drip irrigation application
Chlorantraniliprole + Thiamethoxam

- **Durivo 1.67SC**
 - 2:1 mixture of thiamethoxam & chlorantraniliprole
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg

- **Spectrum of Activity**
 - Lepidopterans, leafhoppers, cucumber beetle
 - Aphids, Beetles, Plant & Stink Bug, Thrips, Mealybug, Whitefly

- Drip application only, 1 application/year.
- 5-day REI for honeybees.
Drip Irrigation of Insecticides
Potato Insect Pest Management
Drip Irrigation Injection Trials, HAES 2010

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insecticide</th>
<th>Rate</th>
<th>Application Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>chlorantraniliprole (Coragen®)**</td>
<td>7.0 fl oz / A</td>
<td>In-furrow</td>
</tr>
<tr>
<td>2</td>
<td>chlorantraniliprole</td>
<td>3.5 & 3.5 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>3</td>
<td>Imidacloprid (AdmirePro®)</td>
<td>8.7 fl oz / A</td>
<td>In-furrow</td>
</tr>
<tr>
<td>4</td>
<td>thiamethoxam (Platinum®)</td>
<td>5.0 & 3.7 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>5</td>
<td>thiamethoxam (Platinum®)</td>
<td>2.67 oz / A</td>
<td>In-furrow</td>
</tr>
<tr>
<td>6</td>
<td>chlorantraniliprole + thiamethoxam (Durivo®)**</td>
<td>6.0 & 7.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>7</td>
<td>Dinotefuran (Scorpion®)</td>
<td>6.0 & 6.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>8</td>
<td>Untreated Control</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: not currently registered
Colorado Potato Beetle Control (1st Generation)

Larval counts May 28 – June 18

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean Larvae / 10 plants</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection</td>
<td>5</td>
<td>0.2738</td>
</tr>
<tr>
<td>In-furrow, at-plant (27 Apr)</td>
<td>10</td>
<td>0.1163</td>
</tr>
<tr>
<td>2, injections (2 and 16 June) – HAES</td>
<td>10</td>
<td>0.0861</td>
</tr>
<tr>
<td>Coragen 1.67SC</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Admire Pro</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Platinum 75SG</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Scorpion (12 oz)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Durivo (13.0 oz)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

In-furrow, at-plant (27 Apr)

2, injections (2 and 16 June) – HAES
Colorado Potato Beetle Control (2nd Generation)

In-furrow, at-plant (27 Apr) 2, injections (2 and 16 June) – HAES

Larval Counts June 18 – July 27

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean Larvae / 10 plants</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection</td>
<td>20</td>
<td>0.0105</td>
</tr>
<tr>
<td>In-furrow</td>
<td>30</td>
<td><0.0001</td>
</tr>
<tr>
<td>Injection</td>
<td>20</td>
<td>0.0094</td>
</tr>
<tr>
<td>In-furrow</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Scorpion (12 oz)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Durivo (13 oz)</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Coragen 1.67SC Admire Pro Platinum 75SG
Colorado Potato Beetle Control (Defoliation)

In-furrow, at-plant (27 Apr) Defoliation assessed July 27
2, injections (2 and 16 June) – HAES

Mean Percent Defoliation

- Injection
- In-furrow
- Injection
- In-furrow
- Injection
- In-furrow
- Scorpion (12 oz)
- Durivo (13.0 oz)
- Control

P = 0.0725 P = 0.0469 P = 0.0833

20% Defoliation
In-furrow, at-plant (27 Apr) PLH Counts 18, 26 June and 2 July
2, injections (2 and 16 June) – HAES

P = 0.1198
P = 0.3816
P = 0.5985

1 adult PLH / sweep
Potato Aphid Control

In-furrow, at-plant (27 Apr)
Aphid Counts 16, 23, 30 July
2, injections (2 and 16 June) – HAES

P = 0.0277
P = 0.1619
P = 0.0503
Potato Insect Pest Management, Drip Irrigation Injection Field Trials, Coloma Farms 2010

Experimental Treatments
- Density (spacing)
- Deficit Irrigation (emitter)
- Hills vs. Beds

Insect Counts (3 zones)
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insecticide</th>
<th>Rate</th>
<th>Generation</th>
<th>Application Type (Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>thiamethoxam ($42/A)</td>
<td>2.67 oz / A</td>
<td>1st generation</td>
<td>Injection (June 6)</td>
</tr>
<tr>
<td></td>
<td>(Platinum® 75SG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chlorantraniliprole ($42/A)</td>
<td>5.0 fl oz / A</td>
<td>2nd generation</td>
<td>Foliar (July 12)</td>
</tr>
<tr>
<td></td>
<td>(Coragen® 1.67SC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 2</td>
<td>thiamethoxam ($68/A)</td>
<td>2.67 oz / A</td>
<td>1st generation</td>
<td>In-furrow (May 4)</td>
</tr>
<tr>
<td></td>
<td>(Platinum® 75SG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>spinetoram ($68/A)</td>
<td>8.0 fl oz / A</td>
<td>1st generation</td>
<td>Foliar (June 13)</td>
</tr>
<tr>
<td></td>
<td>(Radiant® SC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chlorantraniliprole ($68/A)</td>
<td>5.0 fl oz / A</td>
<td>2nd generation</td>
<td>Foliar (July 17)</td>
</tr>
<tr>
<td></td>
<td>(Coragen® 1.67SC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 3</td>
<td>thiamethoxam ($64/A)</td>
<td>2.67 oz / A</td>
<td>1st generation</td>
<td>In-furrow (May 4)</td>
</tr>
<tr>
<td></td>
<td>(Platinum® 75SG)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>chlorantraniliprole ($64/A)</td>
<td>5.0 fl oz / A</td>
<td>1st generation</td>
<td>Foliar (June 13)</td>
</tr>
<tr>
<td></td>
<td>(Coragen® 1.67SC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5 fl oz / A</td>
<td>2nd generation</td>
<td>Foliar (July 12)</td>
</tr>
</tbody>
</table>
Coloma Field Trial (1st Generation CPB)

Mean Larvae / 10 plants

Zone 1

Manifold

Cap

Zone 2

Zone 3

Platinum (injection) Coragen (1X foliar) ($42/A)
P = 0.1839

Platinum (in-furrow) Radiant (1X foliar) Coragen (1X foliar) ($68/A)
P = 0.0862

Platinum (in-furrow) Coragen (2X foliar) ($64/A)

P = 0.0862
Coloma Field Trial (2nd Generation CPB)

Mean Larvae / 10 plants

Manifold
Cap
Zone 2
Zone 3

Platinum (injection)
Coragen (1X foliar)
($42/A)
P = 0.5507

Platinum (in-furrow)
Radiant (1X foliar)
Coragen (1X foliar)
($68/A)
P = 0.1937

Platinum (in-furrow)
Coragen (2X foliar)
($64/A)

Zone 1

0 10 20 30
Coloma Field Trial (Defoliation - CPB)

Mean Percent Defoliation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum (injection) Coragen (1X foliar)</td>
<td></td>
<td>P = 0.2902</td>
</tr>
<tr>
<td>($42/A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum (in-furrow) Radiant (1X foliar)</td>
<td></td>
<td>P = 0.0955</td>
</tr>
<tr>
<td>Coragen (1X foliar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>($68/A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platinum (in-furrow) Coragen (2X foliar)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>($64/A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zone 1

Platinum (injection)
Coragen (1X foliar)
($42/A)

P = 0.2902
Drip Insecticide Program on Fruiting Vegetables

<table>
<thead>
<tr>
<th>Time</th>
<th>Insecticide (PHI)</th>
<th>Rate/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-plant transplant</td>
<td>AdmirePro (21)</td>
<td>0.44 oz / 10,000 plants</td>
</tr>
<tr>
<td>28 days after planting*</td>
<td>Coragen + Admire Pro or... Platinum (30) or Durivo (30)</td>
<td>3.5 - 5 oz/acre 7 - 10.5 oz/acre 5 - 11 oz/acre 10 - 13 oz/acre</td>
</tr>
</tbody>
</table>

*Application of AdmirePro, Plantinum or Durivo must be timed not to violate PHI.

**Season scouting program to determine need for supplemental insecticide sprays should focus on thrips, mites and possibly stink bugs.
Drip Insecticide Program on Brassicas

<table>
<thead>
<tr>
<th>Time</th>
<th>Insecticide (PHI)</th>
<th>Rate/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-plant transplant</td>
<td>AdmirePro (21)</td>
<td>0.44 oz / 10,000 plants</td>
</tr>
<tr>
<td>14-21 days after planting</td>
<td>Coragen (14)</td>
<td>3.5 - 5 oz/acre</td>
</tr>
<tr>
<td>30 days after planting*</td>
<td>Coragen + Admire Pro or…</td>
<td>3.5 - 5 oz/acre</td>
</tr>
<tr>
<td></td>
<td>Platinum (30)</td>
<td>7 - 10.5 oz/acre</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>5 - 11 oz/acre</td>
</tr>
<tr>
<td></td>
<td>Durivo (30)</td>
<td>10 - 13 oz/acre</td>
</tr>
</tbody>
</table>

*Application of AdmirePro, Plantinum or Durivo must be timed to not violate PHI.

Season scouting program to determine need for supplemental insecticide sprays should focus on thrips, mites and possibly stink bugs.
Drip Insecticide Program on Cucurbits

<table>
<thead>
<tr>
<th>Time</th>
<th>Insecticide (PHI)</th>
<th>Rate/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-plant transplant</td>
<td>AdmirePro (21)</td>
<td>0.44 oz / 10,000 plants</td>
</tr>
<tr>
<td>14 - 21 days after planting*</td>
<td>Coragen + Admire Pro**</td>
<td>Platinum (30) or...</td>
</tr>
<tr>
<td></td>
<td>or Durivo (30)</td>
<td></td>
</tr>
<tr>
<td>28 - 35 days after planting*</td>
<td>Coragen (14)</td>
<td>3.5 - 5 oz/acre</td>
</tr>
</tbody>
</table>

*Application of AdmirePro, Platinum or Durivo must be timed to not violate PHI.

**Season scouting program to determine need for supplemental insecticide sprays should focus on thrips, mites and possibly stink bugs.
Drip Application for Insect Control

- Why use drip irrigation for insecticide application?
- What insects are controlled with Drip Application?
- Regulations and tips for best results of drip chemigation.
Drip Application System Requirements of Injection of Insecticides (READ LABEL)

- Check valve, vacuum relief valve, and low pressure drain.
- Automatic, quick closing check valve in injection pipeline.
- Solenoid-operated valve on intake side of injection pump.
- Interlocking controls to shut off injection pump when water pump stops.
- Irrigation or water pump must contain pressure switch to stop water pump when pressure drops.
For Best Results with Drip-Applied Insecticides

- Repair all leaks before chemigating.
- Before injection of insecticide begins, system must be fully pressurized.
- Minimum injection time should be time for water to move from injection point to most distant emitter.
- Water solubility and soil texture affects movement in soil, and timing of injection.
 - Low solubility = limited movement
 - High solubility = readily moves in soil
Water Solubility of Insecticides Registered for Drip Chemigation

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Water solubility (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coragen (chlorantraniliprole)</td>
<td>0.001</td>
</tr>
<tr>
<td>Imidacloprid (AdmirePro)</td>
<td>0.58</td>
</tr>
<tr>
<td>Platinum (thiamethoxam)</td>
<td>4.1</td>
</tr>
<tr>
<td>Venom (dinotefuran)</td>
<td>39.83</td>
</tr>
<tr>
<td>Vydate (oxamyl)</td>
<td>229.0</td>
</tr>
</tbody>
</table>
Conclusions

- Drip application of insecticides offers several advantages over foliar application, including safety, flexibility and longer residual control.

- Combinations of several insecticides with different MoA can achieve broad spectrum insect control.

- Be sure irrigation system is legal for chemigation, and provides uniform distribution of water.
Acknowledgements

Collaborators
AJ Bussan, UW Horticulture
Mick Holm, DuPont Crop Protection
Roberts Irrigation, Plover, WI
Steve and Andy Dierks, Coloma Farms, Coloma WI

Technical Support
Scott Chapman
Anders Husetth
Jolyn Rasmussen

Funding
Midwest Food Processors Association
DuPont Crop Protection
Bayer Crop Science
Syngenta Crop Protection
Gowan Company

QUESTIONS
??