Foliar Protectant Strategies for Control of Potato Virus Y

WPVGA Grower Education Conference Expo I – Seed Production
February 2, 2010

Russell L. Groves
Alex Crockford
Amy Charkowski

1Department of Entomology
2UWEX Langlade County
3Department of Plant Pathology
University of Wisconsin
1630 Linden Drive
Madison, WI 53719

groves@entomology.wisc.edu
Increase proportion of down-grades and rejections resulting from PVY

Percent of lots without mosaic symptoms

Trajectory

Year

20%
Potato virus Y (PVY) re-emergence in the United States

- **Asymptomatic varieties** (certification problems):
 - 'Silverton Russet'
 - 'Russet Norkotah'

- **PVY\(^N:O\)**, Recombinant Strains:
New Insect Vector, Soybean aphid in the Eastern US

Aphis glycines, soybean aphid

Lee 2002

Davis et al. 2008. **Transmission efficiencies ranged from 17 – 74%**
Managing Aphid Transmitted Viruses: Elevated Risk of Spread

➢ Crop protection during periods of greatest risk

2008 A. glycines flights

- Walworth
- Lancaster
- Arlington
- Hancock
- Seymour
- Eau Claire
- Antigo

Crop protection during periods of greatest risk
Non-Persistent Transmission

Acquisition
- seconds

Transmission
- seconds

Retention
- hours

Reproduced from T.L. German
Research Objectives

- **Determine:** (1) seasonal phenology of dispersing aphid vectors and (2) crop protection options to limit spread of PVY.

Goal: Accurately determine periods of elevated risk for PVY transmission and develop disease management strategies to limit PVY spread.

Goal: Evaluate the influence of well-timed, foliar control product (combinations) to limit the spread of PVY.
Seasonal Dispersal of Corn Leaf Aphid: Relationship to PVY Spread, 2009

2009, Langlade County

T_{50} = 28 June

T_{50} = 2 Aug

Seasonal dispersal of corn leaf aphid: Relationship to PVY spread, 2009.
Seasonal Dispersal of Pea Aphid: Relationship to PVY Spread

2009, Langlade County

T₅₀ = 12 July

T₅₀ = 2 Aug

A. pisum

alightment traps
Seasonal Dispersal of Soybean Aphid: Relationship to PVY Spread

2009, Langlade County

T_{50} = 21 July

T_{50} = 2 Aug

A. glycines

alightment traps
Research Objectives

- **Determine**: (1) seasonal phenology of dispersing aphid vectors and (2) crop protection options to limit spread of PVY.

Goal: Accurately determine periods of elevated risk for PVY transmission and develop disease management strategies to limit PVY spread.

Goal: Evaluate the influence of well-timed, foliar control product (combinations) to limit the spread of PVY.
PVY Foliar Oil Protectant Trial, 2008

- **Selection of mineral oils**
 - Aphoil
 - JMS Stylet Oil
 - QRD-416 (Requiem)

- **Application Frequency**
 - once weekly (every 7 days)
 - twice weekly (every 4 days)

- **Application rates**
 - Aphoil (2 and 4%)
 - JMS Stylet Oil (0.75 and 1.5%)

- **Application Technology**
 - D3-DC25 (hollow-cone)
 - XR-11004 (flat fan)
 - 80 and 45 psi
 - 21.1 and 37.5 gpa
Greatest Protection Level with cv. Silverton Russet Achieved with:
(1) 2X weekly applications, and
(2) highest product concentrations

Mean Proportion of PVY-Infected Plants

UTC
Aphoil (2%)
Aphoil (4%)
Aphoil (2%)
Aphoil (4%)
Stylet Oil (0.75%)
Stylet Oil (1.5%)
Stylet Oil (0.75%)
Stylet Oil (1.5%)
QRD 416 (1.0%)

5% mosaic ‘Certified’

P= 0.0213
Products Evaluated for Managing Aphid Transmission of PVY in Wisconsin, 2009

<table>
<thead>
<tr>
<th>Product</th>
<th>Active Ingredient</th>
<th>Rate</th>
<th>Application Frequency</th>
<th>Application Interval (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTC</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>2) Aphoil</td>
<td>mineral oil</td>
<td>4.0 % V/V</td>
<td>weekly</td>
<td>7 (June 5)</td>
</tr>
<tr>
<td>3) Aphoil</td>
<td>mineral oil</td>
<td>4.0 % V/V</td>
<td>weekly</td>
<td>7 (July 15)</td>
</tr>
<tr>
<td>4) Aphoil</td>
<td>mineral oil</td>
<td>4.0 % V/V</td>
<td>weekly</td>
<td>7 (June 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 % V/V</td>
<td>weekly</td>
<td>4 (July 15)</td>
</tr>
<tr>
<td>5) Aphoil</td>
<td>mineral oil</td>
<td>4.0 % V/V</td>
<td>weekly</td>
<td>7 (June 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 % V/V</td>
<td>weekly</td>
<td>4 (July 15)</td>
</tr>
<tr>
<td>Fulfill</td>
<td>pymetrozine</td>
<td>5.5 fl oz / ac</td>
<td>2X</td>
<td>2 (July 20)</td>
</tr>
<tr>
<td>6) Aphoil</td>
<td>mineral oil</td>
<td>4.0 % V/V</td>
<td>weekly</td>
<td>7 (June 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 % V/V</td>
<td>weekly</td>
<td>4 (July 15)</td>
</tr>
<tr>
<td>Beleaf</td>
<td>flonicamid</td>
<td>2.8 fl oz / ac</td>
<td>3X</td>
<td>3 (July 20)</td>
</tr>
<tr>
<td>7) Aphoil</td>
<td>mineral oil</td>
<td>4.0 % V/V</td>
<td>weekly</td>
<td>7 (June 5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0 % V/V</td>
<td>weekly</td>
<td>4 (July 15)</td>
</tr>
<tr>
<td>NNI-0101</td>
<td>pyrfluquinizone</td>
<td>3.2 fl oz / ac</td>
<td>3X</td>
<td>3 (July 20)</td>
</tr>
</tbody>
</table>

Do all varieties require similar levels of protection?
(Goldrush vs. Snowden)

Can we define periods of greatest – need for protection?
PVY Foliar Oil Protectant Trial, 2010
Summer DAS-ELISA Results

Goldrush

Initial Inoculum = 1.25%
P = 0.2774
PVY Foliar Oil Protectant Trial, 2010
Winter Grow-Out Results

Mean Proportion of PVY-Infected Plants

Initial Inoculum = 1.25%
P= 0.0113

5% mosaic

Goldrush

Foliar Protectant
PVY Foliar Oil Protectant Trial, 2010
Summer DAS-ELISA Results

Snowden

Initial Inoculum = 1.25%
P = 0.8263

5% mosaic

Mean Proportion of PVY-Infected Plants
PVY Foliar Oil Protectant Trial, 2010 Winter Grow-Out Results

Snowden

Initial Inoculum = 1.25%
P = 0.0391

Mean Proportion of PVY-Infected Plants

- Untrated Control
- Aphoil 1X/week June 15
- Aphoil 1X/week July 15
- Aphoil 1X/2X June 15 - July 15
- Aphoil 1X/2X Fullfill (2X)
- Aphoil 1X/2X June 15 - July 15 Beleaf (3X)
- Aphoil 1X/2X NNL-0101 (3X)

5% mosaic
Minimizing Current Season Infection:
Foliar Protectant Summary

- In 2008, 2X weekly oil applications of Aphoil and Stylet Oil reduced PVY in daughter tubers of Silverton Russet.

- Again in 2009, Aphoil weekly (June 15) and twice weekly (July 15), resulted in lowest overall PVY in winter test.

 - Suggests that the bulk of infection / transmission occurs in late season
 - Additive effects of selective feeding blockers / behavioral modifiers warrants further investigation

- Level (degree) of foliar protection required varied by cultivar

 - Mature plant resistance in Snowden vs. Goldrush

- Improved understanding of disease progress curve and relationship to primary insect vectors – *A. glycines*
PVY Foliar Oil Protectants
‘Mature Plant Resistance’

Pre-Flower Inoculation

- ‘High’ Susceptibility
- ‘Medium’ Susceptibility
- ‘Low’ Susceptibility

Post-Flower Inoculation

- ‘High’ Susceptibility
- ‘Medium’ Susceptibility
- ‘Low’ Susceptibility

Mean percent PVY daughter tubers (N=40 tubers)

- Cultivar
 - Silverton
 - Russet
 - Norland
 - Atlantic
 - Yukon Gold
 - Snowden
 - Dark Red Norland
 - Villela Rose

P-values:
- Pre-Flower Inoculation: P = 0.0085
- Post-Flower Inoculation: P < 0.0001
Potato Crop Protection
Future Directions

• Accurately predict dispersal dynamics of the soybean aphid
 - physical factors (temperature, precipitation) - abiotic

• Repeat and refine crop protection strategies
 - crop protection combinations
 - application rates, frequency, and intervals
 - cultivar responses to infection
 ‘mature plant resistance’

• Initial inoculum levels and PVY increase

• Examine novel crop protectants
Current Season PVY Spread: Multi-tactic Approach

I. Avoidance in Time: early vine kill

II. Avoidance in Space

III. Plant Clean Potato Seed

IV. Improved Crop Protection