Implementing Pest Management through Drip Irrigation Approaches

Wisconsin Fresh Fruit and Vegetable Conference
Kalahari, Resort, Wisconsin Dells, WI

January 26, 2015

Russell L. Groves
Department of Entomology
University of Wisconsin
1630 Linden Drive
Madison, WI 53719
groves@entomology.wisc.edu

http://www.entomology.wisc.edu/vegento
Wisconsin Vegetable Pest Management

Options for Insect Pest Management – More than ever before!

- Cultural controls
- Natural enemies
- Baits and baiting systems
- Host plant resistance
- Population disruption
- Transgenic plants IR traits
- Reduced-Risk Chemical Insecticides
- Entomopathogens

Vegetable IPM
Factors Influencing Insect Pest Management
‘Food Safety’

– Major food retailers are setting acceptable residue levels below those set by government regulatory agencies.

“No detectable residues” will be a competitive advantage for food retailers.

– Older insecticides that do not meet these requirements are not being re-registered, resulting in increased use of novel insecticides (bio-pesticides).
Factors Influencing Insect Pest Management

‘Environmental Concerns’

– With increasing affluence reaching the developing world, there will be increasing concerns about pesticide usage and perceived environmental effects.

– This will accelerate the shift to “softer” products and technologies.
Factors Influencing Insect Pest Management
‘Water Quantity and Quality’

- Decreasing availability of water for agriculture
 - Agriculture is the overwhelming user of fresh water.
 - Increasing urban demand will drive irrigation efficiency.

- Drip irrigation, micro-sprinklers, hydroponics.

- Targeted application of water increases opportunity to use irrigation as a delivery system.
Drip Application for Insect Control (Cucurbits, Fruiting Vegetables, Brassicas)

- Why use drip irrigation for insecticide applications?
- What insects are controlled with drip application?
- Regulations and tips for best results of drip chemigation.
Pesticide Drift

- Amount of pesticide lost due to drift estimated at 5 to 65%.
- Less than 0.1% of pesticide reaches target insect.
- Consequences of pesticide drift
 - Exposure of humans
 - Exposure of water resources
 - Exposure of wildlife
Limitations of Spraying Insecticides

- Weather conditions
 - Wind
 - Rain
 - Wash-off

- Re-entry intervals

- Pre-harvest intervals
Advantages of Drip Application of Insecticides

- Reduced risk to environment and farm workers
 - Drift to non-target areas is eliminated
 - Farm workers do not come into contact with residues on exterior of plant
 - Beneficial organisms not directly exposed

- Longer residual activity
 - Not subject to loss from rain and UV light
 - Not subject to plant growth dilution effects

- More cost-effective
Drip Application for Insect Control (Cucurbits, Fruiting Vegetables, Brassicas)

- Why use drip irrigation for insecticide application?

- What insects are controlled with drip irrigation applications?

- Regulations and tips for best results of drip chemigation.
What Insecticides Can Be Applied in Drip Irrigation Systems

- Must move systemically through plant.
- Label must specifically state that product can be applied via drip irrigation

<table>
<thead>
<tr>
<th>Neonicotinoids</th>
<th>Diamides</th>
<th>Carbamates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admire</td>
<td>Coragen</td>
<td>Vydate</td>
</tr>
<tr>
<td>Platinum</td>
<td>Synapse</td>
<td></td>
</tr>
<tr>
<td>Venom</td>
<td>HGW86</td>
<td></td>
</tr>
<tr>
<td>HGW86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durivo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MoA Classification Chart
Insecticide Resistance Action Committee (IRAC)

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Group</th>
<th>Chemical group</th>
<th>Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine esterase inhibitors</td>
<td>1A</td>
<td>Carbamates</td>
<td>Carbaryl (Seven), Methomyl (Lannate), Oxamyl (Vydate)</td>
</tr>
<tr>
<td>Nicotinic acetylcholine receptor agonist/antagonists</td>
<td>4A</td>
<td>Neonicotinoids</td>
<td>Acetamiprid (Assail), Dinotefuran (Scorpion), Imidacloprid (Admire, Provado), Thiamethoxam (Actara, Platinum)</td>
</tr>
<tr>
<td>Ryanodine receptor modulator</td>
<td>28</td>
<td>Diamides</td>
<td>Chlorantraniliprole (Coragen), Cyantraniliprole (Verimark)</td>
</tr>
</tbody>
</table>
Thiamethoxam & Imidacloprid

- **Platinum 75SG – Admire Pro**
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg, Potato

- **Spectrum of Activity**
 - Cucumber beetles, squash bug, flea beetle, seed maggots, & CPB
 - Suppression of aphids, thrips, whiteflies

- **Systemic activity**
 - Labeled for foliar and drip irrigation application
Chlorantraniliprole (Rynaxypyr)

- **Coragen 1.67SC**
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg, Potato

- **Spectrum of Activity**
 - Lepidopterans, some beetles (CPB)
 - Whitefly suppression at higher rates

- **Systemic activity**
 - Labeled for foliar and drip irrigation application
Chlorantraniliprole + Thiamethoxam

- **Durivo 1.67SC**
 - 2:1 mixture of thiamethoxam & chlorantraniliprole
 - Brassicas, Cucurbitis, Fruiting Veg, Leafy Veg

- **Spectrum of Activity**
 - Lepidopterans, leafhoppers, cucumber beetle
 - Aphids, Beetles, Plant & Stink Bug, Thrips, Mealybug, Whitefly

- **Drip application only, 1 application/year.**
- **5-day REI for honeybees.**
Drip Irrigation of Insecticides
Potato Insect Pest Management Drip Irrigation Injection Trials, HAES 2010

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insecticide</th>
<th>Rate</th>
<th>Application Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>chlorantraniliprole (Coragen®)**</td>
<td>5.5 & 3.0 fl oz / A</td>
<td>Foliar</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3.5 & 3.5 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>3</td>
<td>Imidacloprid (AdmirePro®)</td>
<td>2.5 & 3.8 fl oz / A</td>
<td>Foliar</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5.0 & 3.7 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>5</td>
<td>thiamethoxam (Platinum®)</td>
<td>1.5 & 3.0 fl oz / A</td>
<td>Foliar</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1.67 & 1.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>7</td>
<td>Dinotefuran (Scorpion®)</td>
<td>6.0 & 6.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>8</td>
<td>chlorantraniliprole + thiamethoxam (Durivo®)**</td>
<td>6.0 & 7.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>9</td>
<td>Untreated Control</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: not currently registered
Colorado Potato Beetle Control (2010 - Potato)

Larvae / 10 plants

2, injections (2 and 16 June) - HAES

- Coragen (8.5 oz)
- Admire Pro (8.7 oz)
- Platinum (2.67 oz)
- Scorpion (12 oz)
- Durivo (13.0 oz)
- Control
Potato Leafhopper Control (2010 - Potato)

2, injections (2 and 16 June) - HAES

- Coragen (8.5 oz)
- Admire Pro (8.7 oz)
- Platinum (2.67 oz)
- Scorpion (12 oz)
- Durivo (13.0 oz)
- Control

Adult PLH / 10 plants
Potato Aphid Control (2010 - Potato)

2, injections (2 and 16 June) - HAES

- Coragen (8.5 oz)
- Admire Pro (8.7 oz)
- Platinum (2.67 oz)
- Scorpion (12 oz)
- Durivo (13.0 oz)
- Control
Cucumber Insect Pest Management
Drip Irrigation Injection Trials, HAES 2010

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Insecticide</th>
<th>Rate</th>
<th>Application Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>chlorantraniliprole (Coragen®)**</td>
<td>5.5 & 3.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>2</td>
<td>Imidacloprid (AdmirePro®)</td>
<td>5.5 & 5.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>3</td>
<td>thiamethoxam (Platinum®)</td>
<td>2.67 & 1.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>4</td>
<td>dinotefuran (Scorpion®)</td>
<td>5.5 & 5.0 fl oz / A</td>
<td>Injection</td>
</tr>
<tr>
<td>5</td>
<td>Untreated Control</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: not currently registered
Cucumber Beetles: Damage

- Defoliation
- Feeding Scars
- Pollination Interference
- Rindworms
Striped Cucumber Beetle Control (2010 - Cucumber)

2, injections (18 May and 4 June) - HAES
Cucumber Beetles – Bacterial Wilt

- Most damage is from bacterial wilt, *Erwinia tracheiphila*
- Closely associated with beetle, vectored via posterior-station
- No cure for bacteria, control through vector
- Susceptibility:
 - Melons (not watermelon) > cucumbers > butternut and Hubbard squash

Avoidance of bacterial wilt is accomplished through effective cucumber beetle control.
Limiting Bacterial Wilt
(2010 - Cucumber)

Mean Percent Symptomatic Plants

2, injections (19 May and 4 June) - HAES

Coragen (8.5 oz)
Admire Pro (10.5 oz)
Platinum (3.67 oz)
Scorpion (10.5 oz)
Control
Drip Application for Insect Control

- Why use drip irrigation for insecticide application?
- What insects are controlled with Drip Application?
- Regulations and tips for best results of drip chemigation.
Drip Application System Requirements of Injection of Insecticides (READ LABEL)

- Check valve, vacuum relief valve, and low pressure drain.
- Automatic, quick closing check valve in injection pipeline.
- Solenoid-operated valve on intake side of injection pump.
- Interlocking controls to shut off injection pump when water pump stops.
- Irrigation or water pump must contain pressure switch to stop water pump when pressure drops.
Example Fertigation – Chemigation Assembly

www.agriculturesolutions.com

www.amiad.com/filters
Example Fertigation – Chemigation Assembly

http://www.reinders.com/rescomirr
Example Backflow Prevention

‘Air Gap’

‘Backflow Preventer’
For Best Results with Drip-Applied Insecticides

- Repair all leaks before chemigating.
- Before injection of insecticide begins, system must be fully pressurized.
- Minimum injection time should be time for water to move from injection point to most distant emitter.
- Water solubility and soil texture affects movement in soil, and timing of injection.
 - Low solubility = limited movement
 - High solubility = readily moves in soil
<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Water solubility (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coragen (chlorantraniliprole)</td>
<td>0.001</td>
</tr>
<tr>
<td>Imidacloprid (AdmirePro)</td>
<td>0.58</td>
</tr>
<tr>
<td>Platinum (thiamethoxam)</td>
<td>4.1</td>
</tr>
<tr>
<td>Venom (dinotefuran)</td>
<td>39.83</td>
</tr>
<tr>
<td>Vydate (oxamyl)</td>
<td>229.0</td>
</tr>
</tbody>
</table>
Durivo Conversion Chart for Drip Linear Application

<table>
<thead>
<tr>
<th>Rate (oz./A)</th>
<th>20”</th>
<th>30”</th>
<th>34”</th>
<th>36”</th>
<th>38”</th>
<th>40”</th>
<th>46”</th>
<th>60”</th>
<th>72”</th>
<th>78”</th>
<th>80”</th>
<th>84”</th>
<th>Row Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.38</td>
<td>0.69</td>
<td>0.73</td>
<td>0.77</td>
<td>0.88</td>
<td>1.15</td>
<td>1.38</td>
<td>1.49</td>
<td>1.53</td>
<td>1.61</td>
<td>0.195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.46</td>
<td>0.63</td>
<td>0.72</td>
<td>0.84</td>
<td>0.97</td>
<td>1.26</td>
<td>1.52</td>
<td>1.64</td>
<td>1.68</td>
<td>1.77</td>
<td>0.215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.5</td>
<td>0.69</td>
<td>0.83</td>
<td>0.92</td>
<td>1.06</td>
<td>1.38</td>
<td>1.65</td>
<td>1.79</td>
<td>1.84</td>
<td>1.93</td>
<td>0.234</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rate in ounces of product per 1,000 linear feet for specified row spacing and rate per acre.
Conclusions

- Drip application of insecticides offers several advantages over foliar application, including safety, flexibility and longer residual control.

- Combinations of several insecticides with different MoA can achieve broad spectrum insect control.

- Be sure irrigation system is legal for chemigation, and provides uniform distribution of water.
Acknowledgements

Collaborators
Bill Halfman, Monroe Co. Cooperative Extension
Roberts Irrigation, Plover, WI

Technical Support
Scott Chapman
Anders Huseth
Jolyn Rasmussen

Funding
Midwest Food Processors Association
DuPont Crop Protection
Bayer Crop Science
EPA Region 5 – American Farmland Trust

Grower / Cooperators
Hancock Agri Experiment Station
Arlington Agri Experiment Station
Jack Buchanon, Hancock, WI

QUESTIONS