Factors Influencing Insect Pest Management

‘Food Safety’

-- Major food retailers are setting acceptable residue levels below those set by government regulatory agencies.

“No detectable residues” will be a competitive advantage for food retailers.

-- Older insecticides that do not meet these requirements are not being re-registered, resulting in increased use of novel insecticides (bio-pesticides).

Factors Influencing Insect Pest Management

‘Water Quantity and Quality’

- Decreasing availability of water for agriculture
 - Agriculture is the overwhelming user of fresh water.
 - Increasing urban demand will drive irrigation efficiency.

- Drip irrigation, micro-sprinklers, hydroponics.

- Targeted application of water increases opportunity to use irrigation as a delivery system.

Drip Application for Insect Control
(Cucurbita, Fruiting Vegetables, Brassicas)

- Why use drip irrigation for insecticide applications?
- What insects are controlled with drip application?
- Regulations and tips for best results of drip chemigation.

Vegetable IPM Resources

- Cornell University, Organic Guide for Vegetables
 http://nysipm.cornell.edu/organic_guide/veg_org_guide.asp

- Vegetable Disease Mgmt Web-page
 http://www.omri.org/omri_lists/download

- UWEX Learning Store
 http://learningstore.uwex.edu/

- WFFVGA
 http://www.wisconsinfreshproduce.org

- Wisconsin Pest Bulletin
 http://datcpservices.wisconsin.gov/pb/index.jsp
Pesticide Drift

- Amount of pesticide lost due to drift estimated at 5 to 65%.
- Less than 0.1% of pesticide reaches target insect.
- Consequences of pesticide drift
 - Exposure of humans
 - Exposure of water resources
 - Exposure of wildlife

Advantages of Drip Application of Insecticides

- Reduced risk to environment and farm workers
 - Drift to non-target areas is eliminated
 - Farm workers do not come into contact with residues on exterior of plant
 - Beneficial organisms not directly exposed
- Longer residual activity
 - Not subject to loss from rain and UV light
 - Not subject to plant growth dilution effects
- More cost-effective

What Insecticides Can Be Applied in Drip Irrigation Systems

- Must move systemically through plant.
- Label must specifically state that product can be applied via drip irrigation

<table>
<thead>
<tr>
<th>Neonicotinoids</th>
<th>Diamides</th>
<th>Carbamates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admire</td>
<td>Coragen</td>
<td>Vydate</td>
</tr>
<tr>
<td>Platinum</td>
<td>Synapse</td>
<td></td>
</tr>
<tr>
<td>Venom</td>
<td>Vermark</td>
<td></td>
</tr>
<tr>
<td>Durivo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MoA Classification Chart

Insecticide Resistance Action Committee (IRAC)

<table>
<thead>
<tr>
<th>Mode of Action</th>
<th>Group</th>
<th>Chemical group</th>
<th>Chemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine esterase inhibitors</td>
<td>1A</td>
<td>Carbamates</td>
<td>Carbaryl (Seven) Methomyl (Lannate) Oxamyl (Vydate)</td>
</tr>
<tr>
<td>Nicotinic acetylcholine receptor agonist/antagonists</td>
<td>4A</td>
<td>Neonicotinoids</td>
<td>Acetamiprid (Assail) Dinotefuran (Scorpion) Imidacloprid (Admire, Provado) Thiamethoxam (Actara, Platinum)</td>
</tr>
<tr>
<td>Ryanodine receptor modulator</td>
<td>2B</td>
<td>Diamides</td>
<td>Chloranthrin (Coragen) Cyantraniliprole (Penmark)</td>
</tr>
</tbody>
</table>

Drip Application for Insect Control (Cucurbits, Fruiting Vegetables, Brassicas)

- Why use drip irrigation for insecticide application?
- What insects are controlled with drip irrigation applications?
- Regulations and tips for best results of drip chemigation.

Thiamethoxam & Imidacloprid

- Platinum 75SG – Admire Pro
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg, Potato
- Spectrum of Activity
 - Cucumber beetles, squash bug, flea beetle, seed maggots, & CPB
 - Suppression of aphids, thrips, whiteflies
- Systemic activity
 - Labeled for foliar and drip irrigation application
Chlorantraniliprole (Rynaxypyr)

- Coragen 1.67SC
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg, Potato

- Spectrum of Activity
 - Lepidopterans, some beetles (CPB)
 - Whitefly suppression at higher rates

- Systemic activity
 - Labeled for foliar and drip irrigation application

Chlorantraniliprole + Thiamethoxam

- Durivo 1.67SC
 - 2:1 mixture of thiamethoxam & chlorantraniliprole
 - Brassicas, Cucurbits, Fruiting Veg, Leafy Veg

- Spectrum of Activity
 - Lepidopterans, leafhoppers, cucumber beetle
 - Aphids, Beetles, Plant & Stink Bug, Thrips, Mealybug, Whitefly

- Drip application only, 1 application/year.
- 5-day REI for honeybees.

Tomato Insect Pests

Common Pests
- Tomato fruitworm
- Tomato hornworm
- Potato aphid
- Cutworms - armyworms
- Thrips

Intermittent Pests
- Flea beetles
- Whiteflies
- Two-spotted spider mites
- Colorado potato beetle
- Vegetable leafminer

Calendar of Tomato Insect Pests

Phenology of Insect Infestations

Early season – planting to 1st flower
- Flea beetles
- Tobacco thrips
- Potato aphids

Neonicotinoid in-line injections

Tomato Fruitworm (corn earworm)

Adult
- Does not overwinter
- Adults migrate from the south
- 2 generations / year

Egg
- Laid singly on leaves
- Hatch in 5-7 days
- Feed externally on leaf and then bore into fruit

Larva
- Develop inside fruit
- Brownish or green in color (morphs)
Tomato Fruitworm Damage

Occurrence
- 2nd generation only – Aug/Sept

Damage
- Small larvae feed on leaves
- Larger bore into fruit
- Develop internally
- Infested fruit may color early or rot
- Major pest in CA and FL

Tomato Fruitworm Monitoring and Control

Cultural
- Plant early: avoidance in time
- Discard infested fruit

Biological
- Effective parasites
- But will not prevent damage

Chemical
- Coragen in-line injection
- Must be very well-timed, product will not move into fruit.

Sweet corn insect control

- Major canning crop in Wisconsin
- Fresh market acreage increasing
- Insect pests primarily ear feeders

Sweet corn – key insect pests

- European corn borer (mid/late)
- Corn earworm (late)
- Fall armyworm (occasional)

European corn borer

Major pest of sweet corn, processing and fresh

Occurrence
- Native to Wisconsin
- Broad host range
- Beans, sweet corn, field corn, potatoes, peppers
- 2-3 generations/year

European corn borer life cycle

Adult
- Night flyers
- 2 normal flight peaks June-August
- 600 HU and 1700 HU
- Live in grass “action sites”

Eggs
- Laid in masses (20-50)
- Overlap like scales
- White – yellow
- Black dots at hatch
- 5-7 days

Larva
- Overwinter in corn stalks
- 5 instars (2-4 weeks)
- Large larvae are damaging borers

Pupae
- Inside stems
- 10-14 days
European corn borer damage

- 1st generation (June) feeds in whorl and stalk
- 2nd generation (August-Sept) feeds directly on ear
- Provide direct protection to the silking ears (diamides very effective)

Corn Earworm – life cycle

Adult
- Does not overwinter in WI
- Moths fly in on storms from South
- Early infestation not a problem usually
- 2 generations

Eggs
- Laid singly on silks
- Hatch 5-7 days

Larva
- Brown or green with stripe
- Feed primarily on ear tips
- Late season

Sweet corn insects: managing worms

Cultural
- Early plantings avoid damage

Biological
- Effective parasites are present, but do not protect ears

Chemical
- Protect only vulnerable crop stage (July-Sept) when pests present
- Systemically mobile insecticides will not provide sufficient protection

Managing “worms” on sweet corn

Drip Application for Insect Control

- Why use drip irrigation for insecticide application?
- What insects are controlled with Drip Application?
- Regulations and tips for best results of drip chemigation.

Drip Application System Requirements of Injection of Insecticides (READ LABEL)

- Check valve, vacuum relief valve, and low pressure drain.
- Automatic, quick closing check valve in injection pipeline.
- Solenoid-operated valve on intake side of injection pump.
- Interlocking controls to shut off injection pump when water pump stops.
- Irrigation or water pump must contain pressure switch to stop water pump when pressure drops.
For Best Results with Drip-Applied Insecticides

- Repair all leaks before chemigating.
- Before injection of insecticide begins, system must be fully pressurized.
- **Minimum** injection time should be time for water to move from injection point to most distant emitter.
- Water solubility and soil texture affects movement in soil, and timing of injection.
 - Low solubility = limited movement
 - High solubility = readily moves in soil

Water Solubility of Insecticides Registered for Drip Chemigation

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Water solubility (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coragen (chlorantraniliprole)</td>
<td>0.001</td>
</tr>
<tr>
<td>Imidacloprid (AdmirePro)</td>
<td>0.58</td>
</tr>
<tr>
<td>Platinum (thiamethoxam)</td>
<td>4.1</td>
</tr>
<tr>
<td>Venom (dinotefuran)</td>
<td>39.83</td>
</tr>
<tr>
<td>Vydate (oxamyl)</td>
<td>229.0</td>
</tr>
</tbody>
</table>

Application Rates for Drip Chemigation

<table>
<thead>
<tr>
<th>Rate (oz./A)</th>
<th>20"</th>
<th>30"</th>
<th>34"</th>
<th>36"</th>
<th>38"</th>
<th>40"</th>
<th>46"</th>
<th>60"</th>
<th>72"</th>
<th>78"</th>
<th>80"</th>
<th>84"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durivo</td>
<td>0.195</td>
<td>0.38</td>
<td>0.57</td>
<td>0.65</td>
<td>0.69</td>
<td>0.73</td>
<td>0.77</td>
<td>0.88</td>
<td>1.15</td>
<td>1.38</td>
<td>1.49</td>
<td>1.53</td>
</tr>
<tr>
<td></td>
<td>0.215</td>
<td></td>
<td>0.234</td>
</tr>
<tr>
<td></td>
<td>0.234</td>
<td></td>
<td>0.254</td>
</tr>
</tbody>
</table>

Conclusions

- Drip application of insecticides offers several advantages over foliar application, including safety, flexibility and longer residual control.
- Combinations of several insecticides with different MoA can achieve broad spectrum insect control.
- Be sure irrigation system is legal for chemigation, and provides uniform distribution of water.
Acknowledgements

Collaborators
Bill Halfman, Monroe Co. Cooperative Extension
Roberts Irrigation, Plover, WI

Technical Support
Scott Chapman
Anders Huseth

Funding
Midwest Food Processors Association
DuPont Crop Protection
Bayer Crop Science
EPA Region 5 - American Farmland Trust

Grower / Cooperators
Hancock Agri Experiment Station
Arlington Agri Experiment Station
Jack Buchanan, Hancock, WI

QUESTIONS ??